耶鲁大学公开课博弈论(十七)——最后通牒与议价

本文探讨了博弈论中的最后通牒和议价问题。在最后通牒博弈中,人们通常并不只关注物质利益,而是受到公平和自尊等因素影响。在议价过程中,参与者通过信息不对称和策略互动来最大化利益。文中分析了在有限轮次议价情况下的最优策略,并以买房为例解释了这些理论在实际谈判中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

博弈论(十七)——最后通牒与议价

这一讲基本可以分为两部分,首先我们先来讨论一下最后通牒

最后通牒

课程中讲述一个博弈,假设有 1 美元让两个人分,第一个人可以选择这 1 美元如何分配。而第二个人可以选择接受或者不接受。如果接受那么将按照第一个人给出的分配方案分配这 1 美元,而如果反对那么两个人都将一无所获。

直观来看基于逆向推理,第一个人只需要给第二个人无限接近于零的分配就可以几乎独占这 1 美元。因为在第一个人分配完之后,第二个人如果选择拒绝那么他的收益将是零;而接受起码能够获得那微不足道的价值,聊胜于无。但实际中,人的抉择似乎并不只关注价值,他们还在乎自尊,公平或者其他无形的东西。所以通常一个很过分的分配将造成一个两败俱伤的局面。

不过这些无形的东西似乎并不是进化的一个错误,让人不再理性而服从感性,放弃已经到手的好处。原因是我们并不是只进行一次如此的交易,如果交易的次数变多,一个更好的策略是让别人都知道自己是一个自尊心很强的人。那么出价顺序似乎就反转了,第一个人面临了第二个人的处境,假定如果第一个人知道第二个人只能接受大于 0.6 美元的报价,那么第一个人最佳的选择是给对方 0.6 美元,否则拒绝了自己也啥都没有了。

不得不感叹进化的神奇,每个结果似乎都有它存在的道理。而这也引出了博弈论的根基 —— 信息的不对称。博弈的关键就在于尽最大的可能了解对方的情况(比如他的自尊有多强,直接一点就是他能接受多少的分配),同时尽最大的可能迷惑对方(让对方觉得自己自尊心很强,你不给我 0.9 美元我都会拒绝)。

课程中还提到即使是在独裁者游戏 —— 第二个人没有拒绝的权力,给多少都必须接受,第一个人还是会给出一定的让步。我

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值