耶鲁大学公开课博弈论(十八-十九)—— 信息集与最优子博弈

本文深入探讨耶鲁大学公开课博弈论第十八至十九讲的内容,重点解析信息集和最优子博弈的概念。通过实例分析,解释了如何在不同博弈场景下运用逆向推理找到全局纳什均衡点,以及在实际决策中如何考虑战略效应和竞争对手的反应。文章还对比了会计、经济学和博弈论方法在评估技术投资决策时的差异,强调了在竞争环境中博弈论的重要性。
摘要由CSDN通过智能技术生成

耶鲁大学公开课博弈论(十八-十九)—— 信息集与最优子博弈

理论与概念

在十八讲中介绍了全局纳什均衡点的相关内容,主要就是通过引入信息集的概念将传统的同时博弈也转变为序贯博弈问题,从而使用逆向推理解决同时博弈问题。比如熟知的同时博弈——囚徒困境:如果假定他们序贯决策,但无论哪一方先回答,另一方都不能获知对方的决策信息,那么最终的效果与同时决策等价。但是这样却能够将博弈论最重要的工具——逆向推理应用到同时博弈问题上。这里老师也再次强调:博弈论最重要不是时间,而是信息。

视频中还举了一个更复杂的例子。

图中红色框中的虚线表示在 3 决策时他并不能知道自己当前是在上面还是下面的节点。例子中如果直接使用纳什均衡来判断,那么(A,U,r)将是一个纳什均衡点,因为首先 1 如果选择 B,那么他的收益将从(A,U,r)的 1 变成(B,U,r)的 0,而 2, 3 无论做出什么选择收益都将是(0,0)。但如果我们假定 1 已经选择了 B,那么根据纳什均衡, 2,3 的纳什均衡点应该是(D,r)。因此出现了整体纳什均衡点并不能给出子博弈的纳什均衡点的情况,因此定义全局纳什均衡点保证其任意子决策都是子博弈的纳什均衡点。全局纳什均衡点能够很方便的使用逆向推理得到:首先考虑 3,虽然 3 并不知道自己的具体决策位置,但无论在哪个位置,他都会选择 r,因为在上面的节点 2  > 1,而下面的节点 0 > -1;再考虑 2,由于已经确知 3 会选择 r,此时 2就会选择 D,因为(D,r)1 > (U,r)0;最后同理考虑 1,由于确知 2,3 会选择 (D,r),1 就会选择 B,因为 (B,D,r)2 > (A,D,r)1。而最后得到的最优策略(B,D,r)也是全局纳什均衡点。

视频中举了三个实例,这里只介绍第二个中的一部分和第三个。

性别大战

第二个例子讲的是之前介绍过的性别大战 —— 博弈双方喜好不一,但只有协作才能获得

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值