pytorch 28 jit模型(TorchScript)转换为onnx模型

本文介绍了如何将PyTorch的TorchScript(jit)模型转换为ONNX模型,以适应不同的部署需求。通过创建jit模型、转化为ScriptModule、设置example_outputs参数来完成转换,并使用onnxruntime进行测试,验证了转换前后模型输出的一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TorchScript是pytorch模型c++下libtorch部署的必须要求,但是已经部署好的jit模型如果有一天突然想换成onnx部署、openvion部署,tensorRT部署则存在一定的困难。因为,pytorch是不支持直接将jit模型模型转换为onnx模型的。为此,对jit模型转换为onnx模型进行研究实现。这里以多输入多输出的jit模型为例,实现将jit模型转换为onnx模型,并用onnxruntime进行测试。测试结果表明,在相同的输入数据下,jit模型与onnx模型的输出结果是完全一模一样的。

1、创建jit模型

如果有现成的jit模型不需要这一步。这里是构建多输入多输出模型,并保存为jit模型

import torch
import torch.nn as nn
import torch.nn.functional as F
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv1 = nn.Conv2d(6, 16, kernel_size=1, stride=1, padding=0)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(16, 16, kernel_size=1, stride=1, 
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万里鹏程转瞬至

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值