python工具方法 43 yolo|voc数据离线增强(实现数据类型平衡)

本文介绍如何通过离线数据增强解决目标检测中的类别不平衡问题,特别是针对YOLO和VOC数据集。利用albumentations库进行图像增强,包括弹性变形,并通过多线程提高效率。同时,提供了统计类别频率和按需增强特定类别的方法,以实现类别间的数据平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在众多的目标检测训练代码中都支持在线数据增强,但并不能妥善的解决数据不平衡的问题(比如yolov8,paddledetion都无法指定类别权重;使用focal loss也只是可以缓解bbox样本不平衡,并不能完全缓解类别间的不平衡),故此需要离线数据增强手段来实现数据类别的平衡。对yolo数据离线增强,将扩展后的数据保存为jpg图片和txt标签。对于voc数据的增强也是通过yolo格式间接实现(yolo与voc数据格式的转换代码可以参考:python工具方法 41)。通过本博文的代码可以实现数据离线增强,结合python工具方法 42中的代码可以对指定类型中的bbox数据进行增强,实现类别间数据平衡。

1、数据增强

1.1 基本数据增强

先构建数据增强demo,使用albumentations 进行数据增强。albumentations的使用可以参考Albumentations——强大的数据增强库(图像分类、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万里鹏程转瞬至

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值