机器学习中的MR和MRR

设有一个test集,大小为M,对其进行分类,label的数目共有N个。那么预测结果共有M个,每个结果是对于N个label的评分,设第i个test目标的groud-truth排名为r_i\in\[1,N\]

MR(Mean Rank,平均排名):

MR=\frac1M\sum_{i=1}^{M}{r_i}

MRR(Mean Reciprocal Rank,平均倒数排名):

MRR=\frac1M\sum_{i=1}^{M}{\frac{1}{r_i}}

可见,MR越小越好,MRR越大越好。

MR的取值范围:\[1,N\]

MRR的取值范围:\[\frac{1}{N},1\],(注意倒数,即1除以原数,而不是倒着数)

举例:

N=1000,M=10,

eg1:排名结果是前9个都是1,最后一个是1000,

那么MR=100.9,MRR=0.9001

当rank非常不均衡,MR不如MRR

eg2:排名结果是全都是4

那么MR=4,MRR=0.25

当rank非常均衡,MRR不如MR

所以为充分考虑,需要同时考察MR和MRR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值