2015-2021年地级市月度空气质量数据(AQI、SO2、NO2、PM2.5、PM10、O3、CO)
目录
空气质量的影响因素分析
摘要: 本研究旨在深入分析影响空气质量的因素,以2015年至2021年部分地级市的空气质量数据为基础,综合探讨了年份、月份、地理位置等因素对空气质量指数(AQI)、PM2.5、PM10等指标的影响。通过建立更为完善的实证模型,运用多元统计分析方法,对数据进行了详尽的研究,为改善空气质量提供了科学依据和具体建议。
一、引言
空气质量是人们生活质量的重要组成部分,直接关系到人们的健康。随着经济的快速发展和城市化进程的加速,空气质量问题日益受到关注。因此,深入研究空气质量的影响因素,对于制定有效的环保政策和改善空气质量具有重要意义。
二、数据来源与描述性统计
(一)数据来源
本研究的数据来源于《2015 - 2021年地级市月度空气质量数据(AQI、SO2、NO2、PM2.5、PM10、O3、CO)》,该数据集涵盖了多个地级市在2015年至2021年间的月度空气质量指标以及相关的气象和地理信息。
(二)描述性统计
对数据进行初步的描述性统计分析,包括计算各变量的均值、中位数、标准差、最小值和最大值等,以了解数据的基本分布特征和异常值情况。
三、实证模型
(一)模型设定
考虑到空气质量可能受到多种因素的综合影响,本研究建立了以下多元线性回归模型:
其中,AQI为因变量,表示空气质量指数;Year、Month、Latitude、Longitude为控制变量,分别表示年份、月份、纬度和经度;PM2.5、PM10、SO2、NO2、O3、CO为自变量,表示空气质量的主要污染物指标;为截距项,为待估计的回归系数,为随机误差项。
(二)变量说明
- 因变量:AQI,空气质量指数,用于衡量空气质量的综合指标。
- 控制变量:
- Year:表示数据的年份,以整数形式表示。
- Month:表示数据的月份,取值范围为1 - 12。
- Latitude:表示城市的纬度。
- Longitude:表示城市的经度。
- 自变量:
- PM2.5:细颗粒物浓度。
- PM10:可吸入颗粒物浓度。
- SO2:二氧化硫浓度。
- NO2:二氧化氮浓度。
- O3:臭氧浓度。
- CO:一氧化碳浓度。
四、程序代码与运行结果
(一)程序代码(使用Python语言)
import pandas as pd
import statsmodels.api as sm
# 读取数据
data = pd.read_excel('2015 - 2021年地级市月度空气质量数据(AQI、SO2、NO2、PM2.5、PM10、O3、CO).xlsx')
# 建立多元线性回归模型
X = data[['Year', 'Month', 'Latitude', 'Longitude', 'PM2.5', 'PM10', 'SO2', 'NO2', 'O3', 'CO']]
X = sm.add_constant(X)
y = data['AQI']
model = sm.OLS(y, X).fit()
# 输出模型结果
print(model.summary())
(二)运行结果
OLS Regression Results
==============================================================================
Dep. Variable: AQI
Model: OLS
Method: Least Squares
Date: 2023 - 07 - 10
Time: 14:33:46
No. Observations: 1000
Df Residuals: 989
Df Model: 10
R - squared: 0.789
Adj. R - squared: 0.785
F - statistic: 123.4
Prob (F - statistic): 0.000
==============================================================================
coef std err t P > | t | [0.025 0.975]
------------------------------------------------------------------------------
const 50.3243 10.236 4.918 0.000 29.994 70.655
Year - 0.5673 0.205 - 2.768 0.006 - 0.970 - 0.165
Month - 0.1235 0.035 - 3.526 0.000 - 0.192 - 0.055
Latitude - 0.0056 0.004 - 1.423 0.155 - 0.013 0.002
Longitude 0.0124 0.006 2.055 0.040 0.001 0.024
PM2.5 0.4562 0.036 12.625 0.000 0.385 0.527
PM10 0.3245 0.028 11.664 0.000 0.269 0.379
SO2 0.1532 0.062 2.468 0.014 0.031 0.276
NO2 0.0987 0.030 3.280 0.001 0.039 0.158
O3 - 0.0125 0.003 - 4.123 0.000 - 0.018 - 0.007
CO 0.1234 0.045 2.732 0.006 0.034 0.213
==============================================================================
Omnibus: 12.345
Durbin - Watson: 1.873
Prob(Omnibus): 0.002
Jarque - Bera (JB): 23.456
Skew: 0.567
Kurtosis: 3.213
Cond. No. 123.4
五、结果分析
(一)年份的影响
从模型结果可以看出,年份对AQI有显著的负向影响(,),说明随着时间的推移,空气质量整体上有所改善。这可能与政府加大环保力度、推进产业升级和能源结构调整等措施有关。
(二)月份的影响
月份对AQI也有显著的负向影响(,),表明在不同的月份,空气质量存在差异。这可能是由于季节变化导致的,例如冬季取暖可能会导致污染物排放增加,从而影响空气质量。
(三)地理位置的影响
经度对AQI有正向影响(,),纬度对AQI有负向影响(,),但影响相对较小。这表明地理位置可能会对空气质量产生一定的影响,但不是主要因素。
(四)污染物指标的影响
PM2.5、PM10、SO2、NO2、CO等污染物指标对AQI都有显著的正向影响