梯度、散度、旋度

梯度的 J a c o b i a n Jacobian Jacobian(Hession矩阵)、散度和旋度以及梯度的散度 L a p l a c i a n Laplacian Laplacian

1 基本概念

设向量 v \boldsymbol{v} v如下:
v = [ 2 x + 3 y 2 y + 3 z 3 3 z 2 + y 2 ] ( i ) ( j ) ( k ) \boldsymbol{v}=\left[\begin{array}{c}2x+3y \\ 2y+3z^3 \\ 3z^2+y^2 \end{array}\right] \begin{array}{c}(\boldsymbol{i}) \\ (\boldsymbol{j}) \\ (\boldsymbol{k})\end{array} v= 2x+3y2y+3z33z2+y2 (i)(j)(k)

其中 i , j , k \boldsymbol{i},\boldsymbol{j},\boldsymbol{k} i,j,k分别为 x , y , z x,y,z x,y,z轴的单位列向量.

定义 ∇ \nabla 算子
∇   =   [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] ( i ) ( j ) ( k ) \nabla\ = \ \left[\begin{array}{c}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{array}\right] \begin{array}{c}(\boldsymbol{i}) \\ (\boldsymbol{j}) \\ (\boldsymbol{k})\end{array}  =  xyz (i)(j)(k)

v \boldsymbol{v} v J a c o b i a n Jacobian Jacobian
v ∇ T   =   [ 2 x + 3 y 2 y + 3 z 3 3 z 2 + y 2 ] [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] =   [ 2 3 0 0 2 9 z 2 0 2 y 6 z ] \begin{aligned} \boldsymbol{v}\nabla^{\rm T}\ &= \ \left[\begin{array}{ccc}2x+3y \\ 2y+3z^3 \\ 3z^2+y^2 \end{array}\right] \left[\begin{array}{ccc}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\end{array}\right] \\ &= \ \left[\begin{array}{ccc}2&3&0 \\0 &2& 9z^2 \\0&2y&6z \end{array}\right] \end{aligned} vT =  2x+3y2y+3z33z2+y2 [xyz]=  200322y09z26z
v \boldsymbol{v} v的散度
∇ ⋅ v   =   ∇ T v   =   ( 2 + 2 + 6 z ) ( 标量 ) \nabla \cdot \boldsymbol{v}\ = \ \nabla^{\rm T}\boldsymbol{v}\ =\ (2+2+6z)_{(标量)} v = Tv = (2+2+6z)(标量)
注意:因为 t r ( A B ) = t r ( B A ) tr(AB)=tr(BA) tr(AB)=tr(BA),所以 v \boldsymbol{v} v J a c o b i a n Jacobian Jacobian的迹等于 v \boldsymbol{v} v的散度.

v \boldsymbol{v} v的旋度
∇ × v   =   ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z 2 x + 3 y 2 y + 3 z 3 3 z 2 + y 2 ∣ =   ( 2 y − 9 z 2 ) i + 0 j + ( − 3 ) k \begin{aligned}\nabla \times \boldsymbol{v}\ &= \ \left|\begin{array}{ccc} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2x+3y & 2y+3z^3 & 3z^2+y^2 \end{array}\right| \\ &=\ (2y-9z^2)\boldsymbol{i}+0\boldsymbol{j}+(-3)\boldsymbol{k} \end{aligned} ×v =  ix2x+3yjy2y+3z3kz3z2+y2 = (2y9z2)i+0j+(3)k
v \boldsymbol{v} v的旋度的散度
∇ ⋅ ( ∇ × v )   =   ∇ T ( ∇ × v ) =   [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] [ 2 y − 9 z 2 0 − 3 ] =   0 ( 标量 ) \begin{aligned} \nabla \cdot (\nabla \times \boldsymbol{v})\ &= \ \nabla^{\rm T}(\nabla \times \boldsymbol{v})\\ &=\ \left[\begin{array}{ccc}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\end{array}\right] \left[\begin{array}{c}2y-9z^2 \\ 0 \\ -3 \end{array}\right]\\ &=\ 0_{(标量)} \end{aligned} (×v) = T(×v)= [xyz] 2y9z203 = 0(标量)

2 举例

自然可以想到,如果 v \boldsymbol{v} v可以是某个函数的梯度(并不是任意的 v \boldsymbol{v} v都可以是某函数的梯度,上述的 v \boldsymbol{v} v就是个反例),那么梯度的 J a c o b i a n Jacobian Jacobian、散度和旋度会有什么性质.

假设 f ( x , y , z ) = x + 2 y 2 + 3 z 3 f(x,y,z)=x+2y^2+3z^3 f(x,y,z)=x+2y2+3z3,则 f f f的梯度 ∇ f \nabla f f如下
∇ f   =   [ ∂ f ∂ x ∂ f ∂ y ∂ f ∂ z ]   =   [ 1 4 y 9 z ] ( i ) ( j ) ( k ) \nabla f\ = \ \left[\begin{array}{c}\frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z}\end{array}\right]\ =\ \left[\begin{array}{c}1 \\ 4y \\ 9z \end{array}\right] \begin{array}{c}(\boldsymbol{i}) \\ (\boldsymbol{j}) \\ (\boldsymbol{k})\end{array} f =  xfyfzf  =  14y9z (i)(j)(k)

梯度 ∇ f \nabla f f J a c o b i a n Jacobian Jacobian( H e s s i o n Hession Hession矩阵 H ( f ) H(f) H(f))
H ( f )   =   [ ∂ 2 f ∂ x 2 ∂ 2 f ∂ x ∂ y ∂ 2 f ∂ x ∂ z ∂ 2 f ∂ y ∂ x ∂ 2 f ∂ y 2 ∂ 2 f ∂ y ∂ z ∂ 2 f ∂ z ∂ x ∂ 2 f ∂ z ∂ y ∂ 2 f ∂ z 2 ] = ( ∇ f ) ∇ T   =   [ 1 4 y 9 z 2 ] [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] =   [ 0 0 0 0 4 0 0 0 18 z ] \begin{aligned} H(f)\ &=\ \left[\begin{array}{ccc} \frac{{\partial}^2f}{\partial x^2} & \frac{{\partial}^2f}{\partial x \partial y} & \frac{{\partial}^2f}{\partial x \partial z}\\ \frac{{\partial}^2f}{\partial y \partial x} & \frac{{\partial}^2f}{ \partial y^2} & \frac{{\partial}^2f}{\partial y \partial z} \\ \frac{{\partial}^2f}{\partial z \partial x} & \frac{{\partial}^2f}{\partial z \partial y} & \frac{{\partial}^2f}{\partial z^2} \end{array}\right] \\ &= (\nabla f)\nabla^{\rm T}\ \\ &= \ \left[\begin{array}{c}1 \\ 4y \\ 9z^2 \end{array}\right] \left[\begin{array}{ccc}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\end{array}\right] \\ &= \ \left[\begin{array}{ccc}0&0&0 \\0 &4& 0 \\0&0&18z \end{array}\right] \end{aligned} H(f) =  x22fyx2fzx2fxy2fy22fzy2fxz2fyz2fz22f =(f)T =  14y9z2 [xyz]=  0000400018z
梯度 ∇ f \nabla f f的散度 L a p l a c i a n Laplacian Laplacian( L ( f ) L(f) L(f))
L ( f )   =   ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 = ∇ T ( ∇ f )   =   [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] [ 1 4 y 9 z 2 ] =   ( 0 + 4 + 18 z ) ( 标量 ) \begin{aligned} L(f)\ &=\ \frac{{\partial}^2f}{\partial x^2} + \frac{{\partial}^2f}{\partial y^2} + \frac{{\partial}^2f}{\partial z^2} \\&=\nabla^{\rm T}(\nabla f)\ \\&= \ \left[\begin{array}{ccc}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\end{array}\right] \left[\begin{array}{c}1 \\ 4y \\ 9z^2 \end{array}\right]\\ &= \ (0+4+18z)_{(标量)} \end{aligned} L(f) = x22f+y22f+z22f=T(f) = [xyz] 14y9z2 = (0+4+18z)(标量)
可见 t r ( H ( f ) ) = L ( f ) tr(H(f))=L(f) tr(H(f))=L(f) .

梯度的旋度恒为 0 \boldsymbol{0} 0 (标量场梯度无旋,电场、重力场等保守场)
∇ × ( ∇ f )   =   ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z 1 4 y 9 z 2 ∣   =   [ 0 0 0 ] =   0 \begin{aligned}\nabla \times (\nabla f)\ &= \ \left|\begin{array}{ccc} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 1&4y&9z^2 \end{array}\right| \ =\ \left[\begin{array}{c}0 \\ 0 \\ 0 \end{array}\right] \\ &=\ \boldsymbol{0} \end{aligned} ×(f) =  ix1jy4ykz9z2  =  000 = 0
梯度的旋度的散度恒为 0 0 0 (矢量场旋度不散,磁场)
∇ ⋅ ( ∇ × ( ∇ f ) )   =   ∇ T ( ∇ × ( ∇ f ) ) =   [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] [ 0 0 0 ] =   0 ( 标量 ) \begin{aligned} \nabla \cdot (\nabla \times (\nabla f))\ &= \ \nabla^{\rm T}(\nabla \times (\nabla f))\\ &=\ \left[\begin{array}{ccc}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\end{array}\right] \left[\begin{array}{c}0 \\ 0 \\ 0 \end{array}\right]\\ &=\ 0_{(标量)} \end{aligned} (×(f)) = T(×(f))= [xyz] 000 = 0(标量)
虽然是从具体的例子得出的结论,但并不失一般性,可推广到高维.具体证明需要用到高斯定理、格林公式或斯托克斯公式等.

梯度、散度、旋度、Jacobian、Hessian、Laplacian 的关系图

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值