目录
时均化概念
雷诺平均纳维-斯托克斯方程(RANS 方程)是流体流动的运动时间平均方程。方程背后的思想是雷诺分解,即将瞬时量分解为其时间平均量和波动量。
将速度矢量分解如下:
同样的,对于压力和其他标量,也可进行时均化处理:
对于时均量,有以下计算规则:
首先写一些符合认知的
-
扰动的时均量为0
-
时均量为一个常数
-
对常数乘时变量的总时均量,可以分开写
然后可得
最后再推导一个重要的,后续会用
将AB的时均量展开,得到以下公式
然后分项化简
最后结果如下:
时均N-S方程推导
假设为不可压缩流体,此时得到N-S方程如下:
此处为爱因斯坦求和约定表示的格式
连续性方程
动量方程
对第二项,根据上述时均计算规则展开得到
对上式的第二项继续计算如下:
最终得到N-S方程的雷诺时均方程如下:
此外,如果考虑密度,可以得到方程如下:
方程封闭
正常的N-S方程包含三个方向的动量守恒方程和一个连续性方程,正好要求解三个方向的速度与压力,方程是闭合的。然而由于高度非线性,没有什么好的办法求解N-S方程。
在对N-S方程时均化,得到RANS方程后,需要求解的变量又多了一个,即雷诺应力。
RSM
雷诺应力模型是求解雷诺应力张量中每个项的输运方程。加上一个额外的尺度确定方程。这意味着在二维流中需要五个额外的输运方程,而在三维流中必须求解七个额外的输运方程。
Boussinesq假设
Boussinesq 假设用于 Spalart-Allmaras 模型和二方程模型。这种方法的优点是与湍流粘度的计算相关的计算成本相对较低。Boussinesq 假设的缺点,它假设是一个各向同性的标量,在有些情景中并不适用。