【CFD理论】雷诺时均模型(RANS)

目录

时均化概念

时均N-S方程推导

连续性方程

动量方程

方程封闭

RSM

Boussinesq假设

时均化概念

雷诺平均纳维-斯托克斯方程(RANS 方程)是流体流动的运动时间平均方程。方程背后的思想是雷诺分解,即将瞬时量分解为其时间平均量和波动量。

将速度矢量分解如下:

同样的,对于压力和其他标量,也可进行时均化处理:

对于时均量,有以下计算规则:

首先写一些符合认知的

  • 扰动的时均量为0

  • 时均量为一个常数

  • 对常数乘时变量的总时均量,可以分开写

然后可得

最后再推导一个重要的,后续会用

将AB的时均量展开,得到以下公式

然后分项化简

最后结果如下:

时均N-S方程推导

假设为不可压缩流体,此时得到N-S方程如下:

此处为爱因斯坦求和约定表示的格式

连续性方程

动量方程

对第二项,根据上述时均计算规则展开得到

对上式的第二项继续计算如下:

最终得到N-S方程的雷诺时均方程如下:

此外,如果考虑密度,可以得到方程如下:


方程封闭

正常的N-S方程包含三个方向的动量守恒方程和一个连续性方程,正好要求解三个方向的速度与压力,方程是闭合的。然而由于高度非线性,没有什么好的办法求解N-S方程。

在对N-S方程时均化,得到RANS方程后,需要求解的变量又多了一个,即雷诺应力。

RSM

雷诺应力模型是求解雷诺应力张量中每个项的输运方程。加上一个额外的尺度确定方程。这意味着在二维流中需要五个额外的输运方程,而在三维流中必须求解七个额外的输运方程。

Boussinesq假设

Boussinesq 假设用于 Spalart-Allmaras 模型和二方程模型。这种方法的优点是与湍流粘度的计算相关的计算成本相对较低。Boussinesq 假设的缺点,它假设是一个各向同性的标量,在有些情景中并不适用。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值