雷诺方程、脉动运动方程及雷诺应力输运方程的推导

一、雷诺分解

对于湍流而言,其流动变量 ϕ \phi ϕ具有不规则性,常常将其分解为平均量与脉动量之和,即 ϕ = ϕ ‾ + ϕ ′ = Φ + ϕ ′ ϕ = < ϕ > + ϕ ′ \begin{aligned}\phi&=\overline{\phi}+\phi'=\Phi+\phi '\\\phi&=\left<\phi\right>+\phi'\end{aligned} ϕϕ=ϕ+ϕ=Φ+ϕ=ϕ+ϕ平均量常常有系综平均、时间平均和空间平均三种形式,这里不展开介绍其中的细节,只给出前两种的表达式:

  • 系综平均 < ϕ > = ∫ − ∞ ∞ ϕ p ( ϕ ) d ϕ . \left<\phi\right>=\int_{-\infty}^{\infty}\phi p\left(\phi\right)\rm d\phi. ϕ=ϕp(ϕ)dϕ.其中 p ( ϕ ) p\left(\phi\right) p(ϕ)是概率密度。
  • 时间平均: Φ = ϕ ‾ = 1 Δ t ∫ 0 Δ t ϕ d t . \Phi=\overline{\phi}=\frac{1}{\Delta t}\int_0^{\Delta t}\phi {\rm{d}}t. Φ=ϕ=Δt10Δtϕdt.

二、平均运算的性质

这里简要列举平均运算(系综平均、时间平均、空间平均)的性质,其对于推导雷诺方程及雷诺应力输运方程至关重要: f ‾ ‾ = f ‾ g f ‾ ‾ = g ‾ f ‾ g + f ‾ = g ‾ + f ‾ f ′ ‾ = 0 f g ‾ = f ‾ g ‾ + f ′ g ′ ‾ ∂ f ∂ x ‾ = ∂ f ‾ ∂ x ∂ f ∂ t ‾ = ∂ f ‾ ∂ t g ′ f ‾ ‾ = 0 \begin{aligned}\overline{\overline{f}}&=\overline{f}\\ \overline{g\overline{f}}&=\overline{g}\overline{f}\\\overline{g+f}&=\overline{g}+\overline{f}\\ \overline{f'}&=0 \\ \overline{fg}&=\overline{f}\overline{g}+\overline{f'g'}\\ \overline{\frac{\partial f}{\partial x}}&=\frac{\partial \overline f}{\partial x} \\ \overline{\frac{\partial f}{\partial t}}&=\frac{\partial \overline f}{\partial t} \\ \overline{g'\overline{f}}&=0 \end{aligned} fgfg+fffgxftfgf=f=gf=g+f=0=fg+fg=xf=tf=0上面这些性质对于系综平均是同样适用的,例如: < g ′ < f > > = 0 、 < ∂ f ∂ x > = ∂ < f > ∂ x \left<g'\left<f\right>\right>=0、 \left<\frac{\partial f}{\partial x}\right>=\frac{\partial \left<f\right>}{\partial x} gf=0xf=xf。这些性质是简单的积分运算,推导相对容易,这里只证明其中两项: g ′ f ‾ ‾ = g ′ ‾ ⋅ f ‾ ‾ = g ′ ‾ ⋅ f ‾ = 0 f g ‾ = ( f ‾ + f ′ ) ( g ‾ + g ′ ) ‾ = f ‾ g ‾ + f ‾ g ′ + f ′ g ‾ + f ′ g ′ ‾ = f ‾ g ‾ ‾ + f ‾ g ′ ‾ + f ′ g ‾ ‾ + f ′ g ′ ‾ = f ‾ g ‾ + f ′ g ′ ‾ \begin{aligned} \overline{g'\overline{f}}&=\overline{g'}\cdot\overline{{\overline{f}}}\\ &=\overline{g'}\cdot\overline{f}\\ &=0\\ \overline{fg}&=\overline{\left(\overline{f}+f'\right)\left(\overline{g}+g'\right)}\\ &=\overline{\overline{f}\overline{g}+\overline{f}g'+f'\overline{g}+f'g'} \\ &=\overline{\overline{f}\overline{g}}+\overline{\overline{f}g'}+\overline{f'\overline{g}}+\overline{f'g'}\\ &=\overline{f}\overline{g}+\overline{f'g'} \end{aligned} gffg=gf=gf=0=(f+f)(g+g)=fg+fg+fg+fg=fg+fg+fg+fg=fg+fg更为详细的推导可以参考博文:湍流模型(2)——雷诺平均方程

三、雷诺方程的推导

不可压缩牛顿型流体的NS方程为 ∂ u i ∂ x i = 0 (1) \frac{\partial u_i}{\partial x_i}=0 \tag{1} xiui=0(1) ∂ u i ∂ t + u j ∂ u i ∂ x j = − 1 ρ ∂ p ∂ x i + ν ∂ 2 u i ∂ x j ∂ x j + f i (2) \frac{\partial u_i}{\partial t}+ u_j\frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho}\frac{\partial p}{\partial x_i}+ \nu \frac{\partial^2 u_i}{\partial x_j\partial x_j}+f_i \tag{2} tui+ujxjui=ρ1xip+νxjxj2ui+fi(2)在下面的推导中我们暂时不考虑体积力项 f i f_i fi,即只考虑 ∂ u i ∂ t + u j ∂ u i ∂ x j = − 1 ρ ∂ p ∂ x i + ν ∂ 2 u i ∂ x j ∂ x j (2) \frac{\partial u_i}{\partial t}+ u_j\frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho}\frac{\partial p}{\partial x_i}+ \nu \frac{\partial^2 u_i}{\partial x_j\partial x_j} \tag{2} tui+ujxjui=ρ1xip+νxjxj2ui(2)对公式 ( 1 ) (1) (1) ( 2 ) (2) (2)作平均运算(系综平均): < ∂ u i ∂ x i > = 0 (3) \left<\frac{\partial u_i}{\partial x_i}\right>=0 \tag{3} xiui=0(3) < ∂ u i ∂ t > + < u j ∂ u i ∂ x j > = < − 1 ρ ∂ p ∂ x i > + < ν ∂ 2 u i ∂ x j ∂ x j > (4) \left<\frac{\partial u_i}{\partial t}\right>+ \left<u_j\frac{\partial u_i}{\partial x_j}\right> = \left<-\frac{1}{\rho}\frac{\partial p}{\partial x_i}\right>+ \left<\nu \frac{\partial^2 u_i}{\partial x_j\partial x_j}\right> \tag{4} tui+ujxjui=ρ1xip+νxjxj2ui(4)由平均运算的性质有: < ∂ u i ∂ x i > = ∂ < u i > ∂ x i = 0 (5) \left<\frac{\partial u_i}{\partial x_i}\right>=\frac{\partial \left<u_i\right>}{\partial x_i}=0 \tag{5} xiui=xiui=0(5)同理:
< ∂ u i ∂ t > = ∂ < u i > ∂ t < − 1 ρ ∂ p ∂ x i > = − 1 ρ ∂ < p > ∂ x i < ν ∂ 2 u i ∂ x j ∂ x j > = ν ∂ 2 < u i > ∂ x j ∂ x j \begin{aligned}\left<\frac{\partial u_i}{\partial t}\right>&=\frac{\partial \left<u_i\right>}{\partial t}\\ \left<-\frac{1}{\rho}\frac{\partial p}{\partial x_i}\right>&=-\frac{1}{\rho}\frac{\partial \left<p\right>}{\partial x_i}\\ \left<\nu \frac{\partial^2 u_i}{\partial x_j\partial x_j}\right>&=\nu \frac{\partial^2\left< u_i\right>}{\partial x_j\partial x_j}\\ \end{aligned} tuiρ1xipνxjxj2ui=tui=ρ1xip=νxjxj2ui对于 < u j ∂ u i ∂ x j > \left<u_j\frac{\partial u_i}{\partial x_j}\right> ujxjui则有: < u j ∂ u i ∂ x j > = < ∂ u i u j ∂ x j − u i ∂ u j ∂ x j > = < ∂ u i u j ∂ x j > − < u i ∂ u j ∂ x j > = < ∂ u i u j ∂ x j > = ∂ < u i u j > ∂ x j = ∂ < u i > < u j > ∂ x j + ∂ < u i ′ u j ′ > ∂ x j = < u j > ∂ < u i > ∂ x j + ∂ < u i ′ u j ′ > ∂ x j \begin{aligned} \left<u_j\frac{\partial u_i}{\partial x_j}\right>&=\left<\frac{\partial u_iu_j}{\partial x_j}-u_i\frac{\partial u_j}{\partial x_j}\right>\\ &=\left<\frac{\partial u_iu_j}{\partial x_j}\right>-\left<u_i\frac{\partial u_j}{\partial x_j}\right>\\ &=\left<\frac{\partial u_iu_j}{\partial x_j}\right>\\ &=\frac{\partial \left<u_iu_j\right>}{\partial x_j}\\ &=\frac{\partial \left<u_i\right>\left<u_j\right>}{\partial x_j}+\frac{\partial \left<u_i'u_j'\right>}{\partial x_j}\\ &=\left<u_j\right>\frac{\partial \left<u_i\right>}{\partial x_j}+\frac{\partial \left<u_i'u_j'\right>}{\partial x_j} \end{aligned} ujxjui=xjuiujuixjuj=xjuiujuixjuj=xjuiuj=xjuiuj=xjuiuj+xjuiuj=ujxjui+xjuiuj上面的推导用到了 ∂ < u j > ∂ x j = 0 \frac{\partial \left<u_j\right>}{\partial x_j}=0 xjuj=0 ∂ u j ∂ x j = 0 \frac{\partial u_j}{\partial x_j}=0 xjuj=0 < u i u j > = < u i > < u j > + < u i ′ u j ′ > \left<u_iu_j\right>= \left<u_i\right>\left<u_j\right>+\left<u_i'u_j'\right> uiuj=uiuj+uiuj。整理以上各项可得: ∂ < u i > ∂ t + < u j > ∂ < u i > ∂ x j + ∂ < u i ′ u j ′ > ∂ x j = − 1 ρ ∂ < p > ∂ x i + ν ∂ 2 < u i > ∂ x j ∂ x j \frac{\partial \left<u_i\right>}{\partial t}+ \left<u_j\right>\frac{\partial \left<u_i\right>}{\partial x_j}+ \frac{\partial \left<u_i'u_j'\right>}{\partial x_j}= -\frac{1}{\rho}\frac{\partial \left<p\right>}{\partial x_i}+ \nu \frac{\partial^2\left< u_i\right>}{\partial x_j\partial x_j} tui+ujxjui+xjuiuj=ρ1xip+νxjxj2ui ∂ < u i ′ u j ′ > ∂ x j \frac{\partial \left<u_i'u_j'\right>}{\partial x_j} xjuiuj移到右边即有雷诺方程 ∂ < u i > ∂ t + < u j > ∂ < u i > ∂ x j = − 1 ρ ∂ < p > ∂ x i + ν ∂ 2 < u i > ∂ x j ∂ x j − ∂ < u i ′ u j ′ > ∂ x j (6) \frac{\partial \left<u_i\right>}{\partial t}+ \left<u_j\right>\frac{\partial \left<u_i\right>}{\partial x_j}= -\frac{1}{\rho}\frac{\partial \left<p\right>}{\partial x_i}+ \nu \frac{\partial^2\left< u_i\right>}{\partial x_j\partial x_j} -\frac{\partial \left<u_i'u_j'\right>}{\partial x_j}\tag{6} tui+ujxjui=ρ1xip+νxjxj2uixjuiuj(6)式中的 − < u i ′ u j ′ > -\left<u_i'u_j'\right> uiuj 乘上密度 ρ \rho ρ便是雷诺应力 − ρ < u i ′ u j ′ > -\rho\left<u_i'u_j'\right> ρuiuj,可以写成张量形式: ( − ρ < u ′ 2 > − ρ < u ′ v ′ > − ρ < u ′ w ′ > − ρ < u ′ v ′ > − ρ < v ′ 2 > − ρ < v ′ w ′ > − ρ < u ′ w ′ > − ρ < v ′ w ′ > − ρ < w ′ 2 > ) . \begin{pmatrix} -\rho \left<{u^{\prime 2}} \right>& -\rho \left<{u^{\prime }v^{\prime}} \right>& -\rho \left<{u^{\prime }w^{\prime}}\right>\\ -\rho \left<{u^{\prime }v^{\prime}} \right>& -\rho \left<{v^{\prime 2}}\right> & -\rho \left<{v^{\prime }w^{\prime}}\right> \\ -\rho \left<{u^{\prime }w^{\prime}} \right>& -\rho \left<{v^{\prime }w^{\prime}} \right>& -\rho \left<{w^{\prime 2}}\right> \end{pmatrix}. \quad ρu2ρuvρuwρuvρv2ρvwρuwρvwρw2.

四、脉动运动方程的推导

NS方程 ( 1 ) (1) (1) ( 2 ) (2) (2)减去雷诺方程 ( 5 ) (5) (5) ( 6 ) (6) (6),并进行一定的整理即可得到脉动运动方程 ∂ u i ′ ∂ x i = 0 (7) \frac{\partial u_i'}{\partial x_i}=0 \tag{7} xiui=0(7) ∂ u i ′ ∂ t + < u j > ∂ u i ′ ∂ x j + u j ′ ∂ < u i > ∂ x j = − 1 ρ ∂ p ′ ∂ x i + ν ∂ 2 u i ′ ∂ x j ∂ x j − ∂ ∂ x j ( u i ′ u j ′ − < u i ′ u j ′ > ) (8) \frac{\partial u_i'}{\partial t}+ \left<u_j\right>\frac{\partial u_i'}{\partial x_j} + u_j'\frac{\partial \left<u_i\right>}{\partial x_j}= -\frac{1}{\rho}\frac{\partial p'}{\partial x_i}+ \nu \frac{\partial^2 u_i'}{\partial x_j\partial x_j} - \frac{\partial}{\partial x_j}\left(u_i'u_j'-\left<u_i'u_j'\right>\right)\tag{8} tui+ujxjui+ujxjui=ρ1xip+νxjxj2uixj(uiujuiuj)(8)下面逐项进行推导: ∂ u i ∂ x i − ∂ < u i > ∂ x i = ∂ ( u i − < u i > ) ∂ x i = ∂ u i ′ ∂ x i \frac{\partial u_i}{\partial x_i}- \frac{\partial \left<u_i\right>}{\partial x_i}= \frac{\partial \left(u_i-\left<u_i\right>\right)}{\partial x_i}= \frac{\partial u_i'}{\partial x_i} xiuixiui=xi(uiui)=xiui故有: ∂ u i ′ ∂ x i = 0 (9) \frac{\partial u_i'}{\partial x_i}=0\tag{9} xiui=0(9)同理: ∂ u i ∂ t − ∂ < u i > ∂ t = ∂ ( u i − < u i > ) ∂ t = ∂ u i ′ ∂ t \frac{\partial u_i}{\partial t}- \frac{\partial \left<u_i\right>}{\partial t}= \frac{\partial \left(u_i-\left<u_i\right>\right)}{\partial t}= \frac{\partial u_i'}{\partial t} tuitui=t(uiui)=tui − 1 ρ ∂ p ∂ x i + 1 ρ ∂ < p > ∂ x i = − 1 ρ ∂ ( p − < p > ) ∂ x i = − 1 ρ ∂ p ′ ∂ x i -\frac{1}{\rho}\frac{\partial p}{\partial x_i}+ \frac{1}{\rho}\frac{\partial \left<p\right>}{\partial x_i}= -\frac{1}{\rho}\frac{\partial \left(p -\left<p\right>\right)}{\partial x_i}= -\frac{1}{\rho}\frac{\partial p'}{\partial x_i} ρ1xip+ρ1xip=ρ1xi(pp)=ρ1xip ν ∂ 2 u i ∂ x j ∂ x j − ν ∂ 2 < u i > ∂ x j ∂ x j = ν ∂ 2 ( u i − < u i > ) ∂ x j ∂ x j = ν ∂ 2 u i ′ ∂ x j ∂ x j \nu \frac{\partial^2 u_i}{\partial x_j\partial x_j}- \nu \frac{\partial^2\left< u_i\right>}{\partial x_j\partial x_j}= \nu \frac{\partial^2\left(u_i-\left< u_i\right>\right)}{\partial x_j\partial x_j}= \nu \frac{\partial^2 u_i'}{\partial x_j\partial x_j} νxjxj2uiνxjxj2ui=νxjxj2(uiui)=νxjxj2ui另外: u j ∂ u i ∂ x j − < u j > ∂ < u i > ∂ x j = ( < u j > + u j ′ ) ∂ ( < u i > + u i ′ ) ∂ x j − < u j > ∂ < u i > ∂ x j = < u j > ∂ < u i > ∂ x j + < u j > ∂ u i ′ ∂ x j + u j ′ ∂ < u i > ∂ x j + u j ′ ∂ u i ′ ∂ x j − < u j > ∂ < u i > ∂ x j = < u j > ∂ u i ′ ∂ x j + u j ′ ∂ < u i > ∂ x j + u j ′ ∂ u i ′ ∂ x j = < u j > ∂ u i ′ ∂ x j + u j ′ ∂ < u i > ∂ x j + ∂ u i ′ u j ′ ∂ x j − u i ′ ∂ u j ′ ∂ x j = < u j > ∂ u i ′ ∂ x j + u j ′ ∂ < u i > ∂ x j + ∂ u i ′ u j ′ ∂ x j \begin{aligned} u_j\frac{\partial u_i}{\partial x_j}- \left<u_j\right>\frac{\partial \left<u_i\right>}{\partial x_j}&= \left(\left<u_j\right>+u_j'\right)\frac{\partial \left(\left<u_i\right>+u_i'\right)}{\partial x_j}- \left<u_j\right>\frac{\partial \left<u_i\right>}{\partial x_j}\\&= \left<u_j\right>\frac{\partial \left<u_i\right>}{\partial x_j}+ \left<u_j\right>\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \left<u_i\right>}{\partial x_j}+ u_j'\frac{\partial u_i'}{\partial x_j}- \left<u_j\right>\frac{\partial \left<u_i\right>}{\partial x_j}\\&= \left<u_j\right>\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \left<u_i\right>}{\partial x_j}+ u_j'\frac{\partial u_i'}{\partial x_j}\\&= \left<u_j\right>\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \left<u_i\right>}{\partial x_j}+ \frac{\partial u_i'u_j'}{\partial x_j}- u_i'\frac{\partial u_j'}{\partial x_j}\\&= \left<u_j\right>\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \left<u_i\right>}{\partial x_j}+ \frac{\partial u_i'u_j'}{\partial x_j} \end{aligned} ujxjuiujxjui=(uj+uj)xj(ui+ui)ujxjui=ujxjui+ujxjui+ujxjui+ujxjuiujxjui=ujxjui+ujxjui+ujxjui=ujxjui+ujxjui+xjuiujuixjuj=ujxjui+ujxjui+xjuiuj上面的推导用到了 ∂ u j ′ ∂ x j = 0 \frac{\partial u_j'}{\partial x_j}=0 xjuj=0。最后雷诺应力项 − ∂ < u i ′ u j ′ > ∂ x j -\frac{\partial \left<u_i'u_j'\right>}{\partial x_j} xjuiuj符号变为正号,整理各项可得: ∂ u i ′ ∂ t + < u j > ∂ u i ′ ∂ x j + u j ′ ∂ < u i > ∂ x j + ∂ u i ′ u j ′ ∂ x j = − 1 ρ ∂ p ′ ∂ x i + ν ∂ 2 u i ′ ∂ x j ∂ x j + ∂ < u i ′ u j ′ > ∂ x j \frac{\partial u_i'}{\partial t}+ \left<u_j\right>\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \left<u_i\right>}{\partial x_j}+ \frac{\partial u_i'u_j'}{\partial x_j}= -\frac{1}{\rho}\frac{\partial p'}{\partial x_i}+ \nu \frac{\partial^2 u_i'}{\partial x_j\partial x_j}+ \frac{\partial \left<u_i'u_j'\right>}{\partial x_j} tui+ujxjui+ujxjui+xjuiuj=ρ1xip+νxjxj2ui+xjuiuj ∂ u i ′ u j ′ ∂ x j \frac{\partial u_i'u_j'}{\partial x_j} xjuiuj移到右边可得 ∂ u i ′ ∂ t + < u j > ∂ u i ′ ∂ x j + u j ′ ∂ < u i > ∂ x j = − 1 ρ ∂ p ′ ∂ x i + ν ∂ 2 u i ′ ∂ x j ∂ x j − ∂ ∂ x j ( u i ′ u j ′ − < u i ′ u j ′ > ) (10) \frac{\partial u_i'}{\partial t}+ \left<u_j\right>\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \left<u_i\right>}{\partial x_j}= -\frac{1}{\rho}\frac{\partial p'}{\partial x_i}+ \nu \frac{\partial^2 u_i'}{\partial x_j\partial x_j}- \frac{\partial}{\partial x_j}\left(u_i'u_j'-\left<u_i'u_j'\right>\right)\tag{10} tui+ujxjui+ujxjui=ρ1xip+νxjxj2uixj(uiujuiuj)(10)

五、雷诺应力输运方程的推导

从脉动运动方程 ( 10 ) (10) (10)出发,在 u i ′ u_i' ui脉动方程上乘以 u j ′ u_j' uj u j ′ u_j' uj脉动方程上乘以 u i ′ u_i' ui,两式相加后作平均运算,得到雷诺应力输运方程 ∂ < u i ′ u j ′ > ∂ t + < u k > ∂ < u i ′ u j ′ > ∂ x k = − < u i ′ u k ′ > ∂ < u j > ∂ x k − < u j ′ u k ′ > ∂ < u i > ∂ x k − 1 ρ ( < u j ′ ∂ p ′ ∂ x i > + < u i ′ ∂ p ′ ∂ x j > ) + ν < u j ′ ∂ 2 u i ′ ∂ x k ∂ x k + u i ′ ∂ 2 u j ′ ∂ x k ∂ x k > − ∂ ∂ x k < u i ′ u j ′ u k ′ > \begin{aligned} \frac{\partial\left<u_i'u_j'\right>}{\partial t}+ \left<u_k\right>\frac{\partial\left<u_i'u_j'\right>}{\partial x_k}=& -\left<u_i'u_k'\right>\frac{\partial\left<u_j\right>}{\partial x_k} -\left<u_j'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} -\frac{1}{\rho}\left(\left<u_j'\frac{\partial p'}{\partial x_i}\right>+\left<u_i'\frac{\partial p'}{\partial x_j}\right>\right)\\&+ \nu\left<u_j'\frac{\partial^2 u_i'}{\partial x_k\partial x_k}+u_i'\frac{\partial^2 u_j'}{\partial x_k\partial x_k}\right>- \frac{\partial }{\partial x_k}\left<u_i'u_j'u_k'\right> \end{aligned} tuiuj+ukxkuiuj=uiukxkujujukxkuiρ1(ujxip+uixjp)+νujxkxk2ui+uixkxk2ujxkuiujuk下面逐项进行推导:

  • (1) < u j ′ ∂ u i ′ ∂ t + u i ′ ∂ u j ′ ∂ t > = < ∂ u i ′ u j ′ ∂ t > = ∂ < u i ′ u j ′ > ∂ t \left<u_j'\frac{\partial u_i'}{\partial t} +u_i'\frac{\partial u_j'}{\partial t}\right>= \left<\frac{\partial u_i'u_j'}{\partial t}\right>= \frac{\partial \left<u_i'u_j'\right>}{\partial t} ujtui+uituj=tuiuj=tuiuj

  • (2)下面已将原式的 j j j替换为 k k k以符合爱因斯坦求和约定
    u j ′ < u k > ∂ u i ′ ∂ x k + u i ′ < u k > ∂ u j ′ ∂ x k = < u k > ∂ u i ′ u j ′ ∂ x k u_j'\left<u_k\right>\frac{\partial u_i'}{\partial x_k} +u_i'\left<u_k\right>\frac{\partial u_j'}{\partial x_k} =\left<u_k\right>\frac{\partial u_i'u_j'}{\partial x_k} ujukxkui+uiukxkuj=ukxkuiuj取时间平均运算有:
    < < u k > ∂ u i ′ u j ′ ∂ x k > = < u k > < ∂ u i ′ u j ′ ∂ x k > = < u k > ∂ < u i ′ u j ′ > ∂ x k \left<\left<u_k\right>\frac{\partial u_i'u_j'}{\partial x_k}\right> =\left<u_k\right>\left<\frac{\partial u_i'u_j'}{\partial x_k}\right> =\left<u_k\right>\frac{\partial \left<u_i'u_j'\right>}{\partial x_k} ukxkuiuj=ukxkuiuj=ukxkuiuj

  • (3)下面也已将原式的 j j j替换为 k k k
    < u j ′ u k ′ ∂ < u i > ∂ x k > + < u i ′ u k ′ ∂ < u j > ∂ x k > = < u j ′ u k ′ > < ∂ < u i > ∂ x k > + < u i ′ u k ′ > < ∂ < u j > ∂ x k > = < u j ′ u k ′ > ∂ < u i > ∂ x k + < u i ′ u k ′ > ∂ < u j > ∂ x k \begin{aligned} \left<u_j'u_k'\frac{\partial \left<u_i\right>}{\partial x_k}\right>+ \left<u_i'u_k'\frac{\partial \left<u_j\right>}{\partial x_k}\right>&= \left<u_j'u_k'\right>\left<\frac{\partial \left<u_i\right>}{\partial x_k}\right>+ \left<u_i'u_k'\right>\left<\frac{\partial \left<u_j\right>}{\partial x_k}\right>\\&= \left<u_j'u_k'\right>\frac{\partial \left<u_i\right>}{\partial x_k}+ \left<u_i'u_k'\right>\frac{\partial \left<u_j\right>}{\partial x_k} \end{aligned} ujukxkui+uiukxkuj=ujukxkui+uiukxkuj=ujukxkui+uiukxkuj

  • (4)
    < − u j ′ ρ ∂ p ′ ∂ x i > + < − u i ′ ρ ∂ p ′ ∂ x j > = − 1 ρ ( < u j ′ ∂ p ′ ∂ x i > + < u i ′ ∂ p ′ ∂ x j > ) \left<-\frac{u_j'}{\rho}\frac{\partial p'}{\partial x_i}\right>+ \left<-\frac{u_i'}{\rho}\frac{\partial p'}{\partial x_j}\right>= -\frac{1}{\rho}\left(\left<u_j'\frac{\partial p'}{\partial x_i}\right>+\left<u_i'\frac{\partial p'}{\partial x_j}\right>\right) ρujxip+ρuixjp=ρ1(ujxip+uixjp)

  • (5)
    < ν u j ′ ∂ 2 u i ′ ∂ x k ∂ x k > + < ν u i ′ ∂ 2 u j ′ ∂ x k ∂ x k > = ν < u j ′ ∂ 2 u i ′ ∂ x k ∂ x k + u i ′ ∂ 2 u j ′ ∂ x k ∂ x k > \left<\nu u_j'\frac{\partial^2 u_i'}{\partial x_k\partial x_k}\right>+ \left<\nu u_i'\frac{\partial^2 u_j'}{\partial x_k\partial x_k}\right> =\nu\left<u_j'\frac{\partial^2 u_i'}{\partial x_k\partial x_k}+u_i'\frac{\partial^2 u_j'}{\partial x_k\partial x_k}\right> νujxkxk2ui+νuixkxk2uj=νujxkxk2ui+uixkxk2uj

  • (6)下面已将原式的 j j j替换为 k k k
    ∂ u i ′ u j ′ ∂ x j = u i ′ ∂ u j ′ ∂ x j + u j ′ ∂ u i ′ ∂ x j = u j ′ ∂ u i ′ ∂ x j = u k ′ ∂ u i ′ ∂ x k \frac{\partial u_i'u_j'}{\partial x_j}= u_i'\frac{\partial u_j'}{\partial x_j}+ u_j'\frac{\partial u_i'}{\partial x_j}= u_j'\frac{\partial u_i'}{\partial x_j}= u_k'\frac{\partial u_i'}{\partial x_k} xjuiuj=uixjuj+ujxjui=ujxjui=ukxkui
    u j ′ u k ′ ∂ u i ′ ∂ x k + u i ′ u k ′ ∂ u j ′ ∂ x k = u j ′ u k ′ ∂ u i ′ ∂ x k + u i ′ u k ′ ∂ u j ′ ∂ x k + u i ′ u j ′ ∂ u k ′ ∂ x k = u j ′ u k ′ ∂ u i ′ ∂ x k + u i ′ ∂ u j ′ u k ′ ∂ x k = ∂ u i ′ u j ′ u k ′ ∂ x k \begin{aligned} u_j'u_k'\frac{\partial u_i'}{\partial x_k}+ u_i'u_k'\frac{\partial u_j'}{\partial x_k}&= u_j'u_k'\frac{\partial u_i'}{\partial x_k}+ u_i'u_k'\frac{\partial u_j'}{\partial x_k}+ u_i'u_j'\frac{\partial u_k'}{\partial x_k}\\&= u_j'u_k'\frac{\partial u_i'}{\partial x_k}+ u_i'\frac{\partial u_j'u_k'}{\partial x_k}\\&= \frac{\partial u_i'u_j'u_k'}{\partial x_k} \end{aligned} ujukxkui+uiukxkuj=ujukxkui+uiukxkuj+uiujxkuk=ujukxkui+uixkujuk=xkuiujuk取时间平均运算得 < ∂ u i ′ u j ′ u k ′ ∂ x k > = ∂ < u i ′ u j ′ u k ′ > ∂ x k \left<\frac{\partial u_i'u_j'u_k'}{\partial x_k}\right>= \frac{\partial \left<u_i'u_j'u_k'\right>}{\partial x_k} xkuiujuk=xkuiujuk上面的推导应用了 ∂ u j ′ ∂ x j = 0 \frac{\partial u_j'}{\partial x_j}=0 xjuj=0 ∂ u k ′ ∂ x k = 0 \frac{\partial u_k'}{\partial x_k}=0 xkuk=0,即式 ( 9 ) (9) (9)

  • (7)下面已将原式的 j j j替换为 k k k
    < u j ′ ∂ < u i ′ u k ′ > ∂ x k > + < u i ′ ∂ < u j ′ u k ′ > ∂ x k > = < u j ′ > < ∂ < u i ′ u k ′ > ∂ x k > + < u i ′ > < ∂ < u j ′ u k ′ > ∂ x k > = 0 \begin{aligned} \left<u_j'\frac{\partial \left<u_i'u_k'\right>}{\partial x_k}\right> +\left<u_i'\frac{\partial \left<u_j'u_k'\right>}{\partial x_k}\right>&= \left<u_j'\right>\left<\frac{\partial \left<u_i'u_k'\right>}{\partial x_k}\right> +\left<u_i'\right>\left<\frac{\partial \left<u_j'u_k'\right>}{\partial x_k}\right> =0 \end{aligned} ujxkuiuk+uixkujuk=ujxkuiuk+uixkujuk=0整理以上各项便可以得到雷诺应力输运方程 ∂ < u i ′ u j ′ > ∂ t + < u k > ∂ < u i ′ u j ′ > ∂ x k = − < u i ′ u k ′ > ∂ < u j > ∂ x k − < u j ′ u k ′ > ∂ < u i > ∂ x k − 1 ρ ( < u j ′ ∂ p ′ ∂ x i > + < u i ′ ∂ p ′ ∂ x j > ) + ν < u j ′ ∂ 2 u i ′ ∂ x k ∂ x k + u i ′ ∂ 2 u j ′ ∂ x k ∂ x k > − ∂ ∂ x k < u i ′ u j ′ u k ′ > (11) \begin{aligned} \frac{\partial\left<u_i'u_j'\right>}{\partial t}+ \left<u_k\right>\frac{\partial\left<u_i'u_j'\right>}{\partial x_k}=& -\left<u_i'u_k'\right>\frac{\partial\left<u_j\right>}{\partial x_k} -\left<u_j'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} -\frac{1}{\rho}\left(\left<u_j'\frac{\partial p'}{\partial x_i}\right>+\left<u_i'\frac{\partial p'}{\partial x_j}\right>\right)\\&+ \nu\left<u_j'\frac{\partial^2 u_i'}{\partial x_k\partial x_k}+u_i'\frac{\partial^2 u_j'}{\partial x_k\partial x_k}\right>- \frac{\partial }{\partial x_k}\left<u_i'u_j'u_k'\right> \end{aligned}\tag{11} tuiuj+ukxkuiuj=uiukxkujujukxkuiρ1(ujxip+uixjp)+νujxkxk2ui+uixkxk2ujxkuiujuk(11)

进一步整理
< u j ′ ∂ p ′ ∂ x i > + < u i ′ ∂ p ′ ∂ x j > = < ∂ u j ′ p ′ ∂ x i − p ′ ∂ u j ′ ∂ x i > + < ∂ u i ′ p ′ ∂ x j − p ′ ∂ u i ′ ∂ x j > = < ∂ u j ′ p ′ ∂ x i > − < p ′ ∂ u j ′ ∂ x i > + < ∂ u i ′ p ′ ∂ x j > − < p ′ ∂ u i ′ ∂ x j > = ( ∂ < u j ′ p ′ > ∂ x i + ∂ < u i ′ p ′ > ∂ x j ) − < p ′ ( ∂ u j ′ ∂ x i + ∂ u i ′ ∂ x j ) > ν < u j ′ ∂ 2 u i ′ ∂ x k ∂ x k + u i ′ ∂ 2 u j ′ ∂ x k ∂ x k > = ν < ∂ ∂ x k ( u i ′ ∂ u j ′ ∂ x k ) + ∂ ∂ x k ( u j ′ ∂ u i ′ ∂ x k ) > − 2 ν < ∂ u i ′ ∂ x k ∂ u j ′ ∂ x k > = ν ∂ 2 < u i ′ u j ′ > ∂ x k ∂ x k − 2 ν < ∂ u i ′ ∂ x k ∂ u j ′ ∂ x k > \begin{aligned} \left<u_j'\frac{\partial p'}{\partial x_i}\right> +\left<u_i'\frac{\partial p'}{\partial x_j}\right>&= \left<\frac{\partial u_j'p'}{\partial x_i}-p'\frac{\partial u_j'}{\partial x_i}\right>+ \left<\frac{\partial u_i'p'}{\partial x_j}-p'\frac{\partial u_i'}{\partial x_j}\right>\\&= \left<\frac{\partial u_j'p'}{\partial x_i}\right> -\left<p'\frac{\partial u_j'}{\partial x_i}\right> +\left<\frac{\partial u_i'p'}{\partial x_j}\right> -\left<p'\frac{\partial u_i'}{\partial x_j}\right>\\&=\left(\frac{\partial \left<u_j'p'\right>}{\partial x_i}+\frac{\partial \left<u_i'p'\right>}{\partial x_j}\right) -\left<p'\left(\frac{\partial u_j'}{\partial x_i}+\frac{\partial u_i'}{\partial x_j}\right)\right>\\ \nu\left<u_j'\frac{\partial^2 u_i'}{\partial x_k\partial x_k}+u_i'\frac{\partial^2 u_j'}{\partial x_k\partial x_k}\right>&= \nu\left<\frac{\partial}{\partial x_k}\left(u_i'\frac{\partial u_j'}{\partial x_k}\right)+\frac{\partial}{\partial x_k}\left(u_j'\frac{\partial u_i'}{\partial x_k}\right)\right> -2\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_j'}{\partial x_k}\right>\\&= \nu\frac{\partial^2\left<u_i'u_j'\right>}{\partial x_k\partial x_k} -2\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_j'}{\partial x_k}\right> \end{aligned} ujxip+uixjpνujxkxk2ui+uixkxk2uj=xiujppxiuj+xjuippxjui=xiujppxiuj+xjuippxjui=(xiujp+xjuip)p(xiuj+xjui)=νxk(uixkuj)+xk(ujxkui)2νxkuixkuj=νxkxk2uiuj2νxkuixkuj
得:
∂ < u i ′ u j ′ > ∂ t + < u k > ∂ < u i ′ u j ′ > ∂ x k ⏟ C i j = − < u i ′ u k ′ > ∂ < u j > ∂ x k − < u j ′ u k ′ > ∂ < u i > ∂ x k ⏟ P i j + < p ′ ρ ( ∂ u j ′ ∂ x i + ∂ u i ′ ∂ x j ) > ⏟ Φ i j − ∂ ∂ x k ( < p ′ u i ′ > ρ δ j k + < p ′ u j ′ > ρ δ i k + < u i ′ u j ′ u k ′ > − ν ∂ < u i ′ u j ′ > ∂ x k ) ⏟ D i j − 2 ν < ∂ u i ′ ∂ x k ∂ u j ′ ∂ x k > ⏟ E i j \begin{aligned} &\underset{C_{ij}}{\underbrace{\frac{\partial\left<u_i'u_j'\right>}{\partial t}+ \left<u_k\right>\frac{\partial\left<u_i'u_j'\right>}{\partial x_k}} }= \underset{P_{ij}}{\underbrace{-\left<u_i'u_k'\right>\frac{\partial\left<u_j\right>}{\partial x_k} -\left<u_j'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k}}} + \underset{\Phi_{ij}}{\underbrace{\left<\frac{p'}{\rho}\left(\frac{\partial u_j'}{\partial x_i}+\frac{\partial u_i'}{\partial x_j}\right)\right>}} \\& -\underset{D_{ij}}{\underbrace{\frac{\partial}{\partial x_k} \left( \frac{\left<p'u_i'\right>}{\rho}\delta_{jk}+ \frac{\left<p'u_j'\right>}{\rho}\delta_{ik}+ \left<u_i'u_j'u_k'\right>- \nu\frac{\partial \left<u_i'u_j'\right>}{\partial x_k} \right) }} -\underset{E_{ij}}{\underbrace{2\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_j'}{\partial x_k}\right>}} \end{aligned} Cij tuiuj+ukxkuiuj=Pij uiukxkujujukxkui+Φij ρp(xiuj+xjui)Dij xk(ρpuiδjk+ρpujδik+uiujukνxkuiuj)Eij 2νxkuixkuj

六、参考资料

《湍流理论与模拟》第二版 ⋅ \cdot 张兆顺、崔桂香、许春晓、黄伟希

输运方程是描述粒子或能量在空间中传输的数学模型。在Matlab中,可以使用偏微分方程求解器来求解输运方程。 Matlab提供了几种求解偏微分方程的函数,其中包括pdepe和pdepeopt。pdepe函数可以用于求解一维和二维的定常或非定常偏微分方程,而pdepeopt函数可以用于设置求解选项。 使用pdepe函数求解输运方程的一般步骤如下: 1. 定义偏微分方程的形式,包括方程的系数、边界条件和初始条件。 2. 定义空间网格和时间步长。 3. 调用pdepe函数进行求解,并获取解的结果。 4. 可以使用plot函数将结果可视化。 以下是一个示例代码,演示了如何使用Matlab求解一维输运方程: ```matlab function transport_equation() x = linspace(0, 1, 100); % 定义空间网格 t = linspace(0, 1, 100); % 定义时间步长 m = 0; % 方程系数 d = 1; % 方程系数 sol = pdepe(m, @transport_pde, @transport_ic, @transport_bc, x, t); % 求解输运方程 u = sol(:,:,1); % 获取解的结果 surf(x, t, u); % 可视化结果 xlabel('空间'); ylabel('时间'); zlabel('解'); end function [c, f, s] = transport_pde(x, t, u, DuDx) c = 1; % 方程系数 f = d*DuDx; % 方程形式 s = 0; % 方程形式 end function u0 = transport_ic(x) u0 = sin(pi*x); % 初始条件 end function [pl, ql, pr, qr] = transport_bc(xl, ul, xr, ur, t) pl = ul; % 左边界条件 ql = 0; % 左边界条件 pr = ur; % 右边界条件 qr = 0; % 右边界条件 end ``` 以上代码定义了一个一维输运方程,使用pdepe函数求解,并使用surf函数将结果可视化。你可以根据具体的输运方程进行修改和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值