支持向量机(SVM)关键点攻略(最大间隔,对偶问题)

本文详细探讨支持向量机(SVM)的背景、优化目标及求解策略,尤其是如何找到最佳分割超平面。通过理解几何间隔的概念,作者解释了SVM如何确保模型对噪声的容忍度,并介绍了对偶问题在解决SVM中的应用,避免了复杂函数间隔的讨论。同时推荐了Adrew Ng关于矩阵迹公式的教学内容。
摘要由CSDN通过智能技术生成

  近来学习支持向量机,杂七杂八的视频、文章看了一大堆,总算是对SVM中比较难以理解的部分有了一些心得体会,因而记录在此。一方面方便自己以后复习,另一方面也是分享给有需要的朋友查看,另外有理解错误的地方希望大家能够指出,多多讨论,共同进步。


1. SVM提出背景

1) 哪条线最好?

哪条线最好?
  容易看出,第三幅图里的分割超平面看起来“更好”。
  
2) 为什么好?

这里写图片描述
  能够容忍更多噪声—>所有样本与分割超平面的距离尽可能远—>最差的样本(离分割超平面最近的样本)与分割超平面的距离要尽可能远

因此,SVM的目的就是从无数多个分割超平面中,找到这样最好的分割超平面。

2. SVM的优化目标

  这个部分是我纠结了很久,被各种资料里讲解的几何间隔和函数间隔绕晕了,不知道有没有和我一样的朋友。。。因此我决定绕过函数间隔,只从几何间隔的角度来考虑这个事情,并给出推导过程。
  接下来先简单谈谈几何间隔的定义。
  令( x(i) , y(i) ), i=1,2,...,m 为训练集中的一个样本,一共有 m 个样本。 wTx+b=0 为超平面, w b 是我们要求的参数。则样本( x(i) , y(i) )到超平面 wTx+b=0 的距离(几何间隔)定义为:

γ=|wTx+b|||w||

  因为 wTx+b=0 能正确分类样本,所以有:
y(wTx+b)>0

  因此为了计算方便,可以去掉 γ 表达式中的绝对值,写成:
γ=y(wTx+b)||w||

  事实上,y取±1时,上式与最开始的定义完全等价。
  
  上面说到,我们要找的线描述为: 离分割线最近的样本与分割线的距离尽量远
  什么叫离分割线最近的样本?答:就是所有样本与分割线的距离,都大于等于该样本与分割线的距离。假设该样本为 (x(k),y(k)) ,则有:
y(i)(wTx(i)+b)||w||y(k)(wTx(k)+b)||w||,i=1,2,...,m

  此为 约束条件
  什么是尽量远?答:
maxw,by(k)(wTx(k)+b)||w||

  此为 目标
  为了书写方便,不妨设 y(k)(wTx(k)+b)=K (样本已确定,是一个常数),并约去约束条件中的分母,则上述两式联合起来可写为:
maxw,bK||w||
s.t.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值