打印最短路的路径
打印最短路径的方法
- 保存每个节点的父亲节点,具体用二维矩阵来存储节点。
- 在bfs的过程中更新数组。
if ((0 <= nx && nx < 5) && (0 <= ny && ny < 5) && (dis[nx][ny] == -1) && (maze[nx][ny] != 1)) {
que.push(Node(nx, ny));
path[nx][ny] = curNode;
dis[nx][ny] = dis[x][y] + 1;
}
根据节点矩阵打印最短路径
- 主要是构造递归函数,递归函数的宏观语义是打印从起点到目标节点的最短路径。
void printPath(Node u){
if(u.x == sx && u.y == sy){
printf("(0, 0)\n");
}
printPath(path[u.x][u.y]);
printf("(%d, %d)\n", u.x, u.y);
}
AC码
#include <iostream>
#include<queue>
using namespace std;
struct Node
{
int x, y;
Node(int a = 0, int b = 0) {
x = a;
y = b;
}
};
int dx[] = { 0,-1,0,1 };
int dy[] = { -1,0,1,0 };
int maze[5][5];
int dis[5][5];
Node path[5][5];// 用来存储(i,j)位置的父亲节点
void bfs() {
memset(dis, -1, sizeof(dis));
int sx = 0, sy = 0, gx = 4, gy = 4;
// 初始化头节点和队列
queue<Node> que;
que.push(Node(0, 0));
dis[0][0] = 0;
while (!que.empty()) {
Node curNode = que.front();
que.pop();
int x = curNode.x, y = curNode.y;
if (x == gx && y == gy)break;
for (int i = 0; i < 4; i++) {
int nx = x + dx[i], ny = y + dy[i];
if ((0 <= nx && nx < 5) && (0 <= ny && ny < 5) && (dis[nx][ny] == -1) && (maze[nx][ny] != 1)) {
que.push(Node(nx, ny));
path[nx][ny] = curNode;
dis[nx][ny] = dis[x][y] + 1;
}
}
}
}
// 打印从起点到终点的路径
void printPath(Node node) {
if (node.x == 0 && node.y == 0) {
cout << "(0, 0)" << endl;
return;
}
printPath(path[node.x][node.y]);
printf("(%d, %d)\n", node.x, node.y);
}
int main()
{
for (int i = 0; i < 5; i++)
for (int j = 0; j < 5; j++)
cin >> maze[i][j];
bfs();
printPath(Node(4,4));
return 0;
}