统计学习方法——第六章logistic递归

本文详细介绍了Logistic回归的概念,包括模型的引入、参数估计方法(极大似然估计和梯度下降法),并提供了Python代码实现。通过对比与线性回归的区别,阐述了Logistic回归在概率模型学习中的应用。最后,展示了数据加载、训练、测试及可视化的步骤,实验结果显示模型准确率为0.969697。
摘要由CSDN通过智能技术生成

        Logistic回归是统计学中的经典分类方法,最大熵是概率模型学习的一个准则,将其推广到分类问题得到最大熵模型,logistic回归模型与最大熵模型都是对数线性模型。

【Logistic回归-算法】

可参考博客

《统计学习方法》简述http://blog.csdn.net/BOBOyspa/article/details/78247157

讲解+代码

       http://blog.csdn.net/zouxy09/article/details/20319673?locationNum=6&fps=1

基本讲解

       如下图,logistic(逻辑斯谛)回归模型的引入、模型的参数估计(极大对数似然估计以及梯度下降法):


最终类别的判定

       对于给定的样本x,利用二项逻辑斯蒂回归模型计算该样本类别为1和0的概率,然后,将样本x分类到概率较大的那一类。

       将h=0.5作为一个阀值,当估计值大于0.5时把样本分为1类,估计值小于0.5时把样本分为0类。

*logistic回归 VS logistic回归:

       logistic回归实际上就是对线性回归多增加了一个函数映射,使其值域由无穷区间映射到[0,1]区间。实现此功能需要在输出加一个logistic函数。

算法流程如下:</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值