【算能】TPU-MLIR 工具链之model_qtable

在算能(Sophgo)的 ​TPU-MLIR 工具链中,model_qtable.py 是用于 ​量化参数调优 的脚本,主要用于分析模型的量化敏感度、生成混合精度配置或优化量化参数表(Quantization Table)。以下是其核心功能与使用详解:


一、核心功能

  1. 量化敏感度分析

    • 通过分析各层的量化误差(KL散度、MSE),识别对量化敏感的层。
    • 生成敏感度报告,指导混合精度配置。
  2. 混合精度配置文件生成

    • 根据敏感度阈值自动生成 JSON 配置文件,指定需保留 FP16/BF16 的层。
  3. 量化参数调整

    • 支持手动或自动调整各层的量化参数(Scale/Zero-Point),优化激活值动态范围。

二、典型使用流程

1. 环境准备

确保已通过 model_transform.py

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值