【机器学习】随机森林:深度解析与应用指南

随机森林(Random Forest)是集成学习中的经典算法,通过组合多棵决策树实现高精度与强鲁棒性。以下从核心原理、数学推导、调优技巧、实战应用前沿扩展进行全面剖析:


一、核心原理与双重随机性
  1. Bagging框架

    • Bootstrap抽样​:每棵树训练时从原始数据集中有放回抽样生成子数据集(约63.2%的样本被选中)。
    • 特征随机性​:每次节点分裂时,仅从随机子集(如 个特征)中选择最优分裂点,降低树间相关性。
  2. 数学表达

    • 分类任务​:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值