随机森林(Random Forest)是集成学习中的经典算法,通过组合多棵决策树实现高精度与强鲁棒性。以下从核心原理、数学推导、调优技巧、实战应用到前沿扩展进行全面剖析:
一、核心原理与双重随机性
-
Bagging框架
- Bootstrap抽样:每棵树训练时从原始数据集中有放回抽样生成子数据集(约63.2%的样本被选中)。
- 特征随机性:每次节点分裂时,仅从随机子集(如
个特征)中选择最优分裂点,降低树间相关性。
-
数学表达
- 分类任务:
随机森林(Random Forest)是集成学习中的经典算法,通过组合多棵决策树实现高精度与强鲁棒性。以下从核心原理、数学推导、调优技巧、实战应用到前沿扩展进行全面剖析:
Bagging框架
数学表达