【YOLO】YOLOv5选择BCE​而非CE作为分类损失的解析

YOLOv5选择二元交叉熵损失(BCE)​而非多分类交叉熵损失(CE)作为分类损失,其核心原因与目标检测任务的特性和模型设计需求密切相关。以下从任务需求、数学原理、实现优化三个维度详细解析这一设计选择:


一、任务需求:目标检测的“多标签”特性

目标检测任务中,​一个锚框(Anchor)可能同时覆盖多个物体或部分物体​(尤其在密集场景中),且需要模型对每个锚框独立判断其所属类别。这导致两个关键特点:

  1. 多标签可能性​:一个锚框可能对应多个潜在类别(如同时覆盖“行人”和“汽车”的边界)。
  2. 类别独立性​:不同类别的存在性应独立判断(如“猫”和“狗”可能共存于同一区域)。

CE的局限性​:
多分类交叉熵通过Softmax强制所有类别概率之和为1,隐含“类别互斥”假设。若锚框覆盖区域存在多个类别,Softmax会迫使模型在相似类别间竞争概率值(如“猫” vs “狗”),导致以下问题:

  • 锚框的类别预测受无关类别干扰(如某区域明显是“猫”,但因存在“狗”类
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值