Focal Loss 是一种专门针对类别不平衡(Class Imbalance)问题设计的损失函数,由何恺明团队在2017年提出,主要用于目标检测(如RetinaNet)和分类任务中。其核心思想是通过调整损失权重,降低易分类样本的贡献,使模型更关注难分类样本,从而缓解类别不平衡带来的训练偏差。
1. 核心原理
(1) 类别不平衡问题
在目标检测或分类任务中,负样本(背景或多数类)数量远多于正样本(目标或少数类)。例如:
- 目标检测中,90%的锚框(Anchor)属于背景。
- 医学影像中,正常组织(负类)样本远多于病变区域(正类)。
传统交叉熵损失(CE)对所有样本平等加权,导致模型被大量简单负样本主导,难以学习少数类的关键特征。
(2) Focal Loss的数学形式
Focal Loss在标准交叉熵基础上引入两个调节因子: