Focal Loss损失函数解析

Focal Loss 是一种专门针对类别不平衡(Class Imbalance)​问题设计的损失函数,由何恺明团队在2017年提出,主要用于目标检测(如RetinaNet)和分类任务中。其核心思想是通过调整损失权重,​降低易分类样本的贡献,使模型更关注难分类样本,从而缓解类别不平衡带来的训练偏差。


1. 核心原理

​(1) 类别不平衡问题

在目标检测或分类任务中,​负样本(背景或多数类)数量远多于正样本(目标或少数类)​。例如:

  • 目标检测中,90%的锚框(Anchor)属于背景。
  • 医学影像中,正常组织(负类)样本远多于病变区域(正类)。

传统交叉熵损失(CE)对所有样本平等加权,导致模型被大量简单负样本主导,难以学习少数类的关键特征。

​(2) Focal Loss的数学形式

Focal Loss在标准交叉熵基础上引入两个调节因子:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值