对复现模型性能产生干扰的因素

固定随机种子!

下述代码放在代码的最前面。用于固定随机种子。

    manualSeed = 1
    random.seed(manualSeed)
    torch.manual_seed(manualSeed)
    torch.manual_seed(manualSeed)
    np.random.seed(manualSeed)
    torch.cuda.manual_seed_all(manualSeed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True

不要定义无关变量!

在固定随机随机种子后,无关变量的定义可能会对结果产生影响。

比如在定义模型后,定义了一个代码中其他地方未用到的变量input_2d,该变量的存在会影响随机种子,产生随机的干扰。
做一个可能不正确的比喻,比如种子序列是[1,2,3,4,5,6], 该变量(input_2d)的产生占用了[1,2],这样其他随机变量的产生就只能利用剩下的随机数。

    model = Model(opt, adj).cuda()
    input_2d = torch.rand(2, 2, 3,17, 1, requires_grad = True)
    # input_2d = torch.ones(2, 2, 3,17, 1, requires_grad = True) # 该变量的产生没有用到随机数,不会对模型性能产生干扰

注: 经过实验测试,required_grad 的True or False 对实验结果并没有影响,因为该变量并没有实际用到。
如果定义的随机变量没有用到随机数,就不会对结果产生影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiu_cs

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值