固定随机种子!
下述代码放在代码的最前面。用于固定随机种子。
manualSeed = 1
random.seed(manualSeed)
torch.manual_seed(manualSeed)
torch.manual_seed(manualSeed)
np.random.seed(manualSeed)
torch.cuda.manual_seed_all(manualSeed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
不要定义无关变量!
在固定随机随机种子后,无关变量的定义可能会对结果产生影响。
比如在定义模型后,定义了一个代码中其他地方未用到的变量input_2d
,该变量的存在会影响随机种子,产生随机的干扰。
做一个可能不正确的比喻,比如种子序列是[1,2,3,4,5,6], 该变量(input_2d)的产生占用了[1,2],这样其他随机变量的产生就只能利用剩下的随机数。
model = Model(opt, adj).cuda()
input_2d = torch.rand(2, 2, 3,17, 1, requires_grad = True)
# input_2d = torch.ones(2, 2, 3,17, 1, requires_grad = True) # 该变量的产生没有用到随机数,不会对模型性能产生干扰
注: 经过实验测试,required_grad 的True or False 对实验结果并没有影响,因为该变量并没有实际用到。
如果定义的随机变量没有用到随机数,就不会对结果产生影响。