1.OPPO天池OGeek算法挑战赛
方案介绍:https://zhuanlan.zhihu.com/p/149075795
Github链接:https://github.com/bettenW/TIANCHI_OGeek_Rank2
2.KDD-CUP 2020 Debiasing赛道
方案介绍
- https://mp.weixin.qq.com/s/ONv5oPA2VMZLRUhB037hFw
- https://zhuanlan.zhihu.com/p/149424540
Github链接:https://github.com/ChuanyuXue/KDDCUP-2020
3.2019腾讯广告算法大赛
问题简述:
腾讯效果广告采用的是GSP(Generalized Second-Price)竞价机制,广告的实际曝光取决于广告的流量覆盖大小和在竞争广告中的相对竞争力水平。其中广告的流量覆盖取决于广告的人群定向(匹配对应特征的用户数量)、广告素材尺寸(匹配的广告位)以及投放时段、预算等设置项。而影响广告竞争力的主要有出价、广告质量等因素(如pctr/pcvr等), 以及对用户体验的控制策略。 通常来说, 基本竞争力可以用ecpm = 1000 * cpc_bid * pctr = 1000 * cpa_bid * pctr * pcvr (cpc, cpa分别代表按点击付费模式和按转化付费模式)。综上,前者决定广告能参与竞争的次数以及竞争对象,后者决定在每次竞争中的胜出概率。二者最终决定广告每天的曝光量。
本次竞赛将提供历史n天的曝光广告的数据(特定流量上采样), 包括对应每次曝光的流量特征(用户属性和广告位等时空信息)以及曝光广告的设置和竞争力分数;测试集是新的一批广告设置(有完全新的广告id, 也有老的广告id修改了设置), 要求预估这批广告的日曝光 。(出于业务数据安全保证的考虑,所有数据均为脱敏处理后的数据。)
官方链接:https://algo.qq.com/archive.html?
方案介绍:https://zhuanlan.zhihu.com/p/73062485
Github:https://github.com/bettenW/Tencent2019_Finals_Rank1st