【异常检测】task4 基于相似度的方法

1. 概述

  关于“异常”的定义需要结合具体的义务背景和环境来具体分析确定
数据中包含正常数据、噪声和异常,噪声可以被认为特性较弱的异常值,没有被分析的价值。异常值通常具有更高的离群程度分数值,同时也更具有可解释性。
在异常检测中,我们一般忽略噪声,专注于哪些有价值特性的异常值。在基于相似度的方法中,主要思想是异常点的表示与正常点不同。


2. 基于距离的度量

时间复杂度优缺点
嵌套循环 O ( N 2 ) O(N^{2}) O(N2)时间复杂度大,数据量大的时候不划算
基于单元格的方法
基于索引的方法在最坏情况下为 O ( k N 2 ) , O\left(k N^{2}\right), O(kN2), 其中 k k k 是数据集维数, N N N 是数据集包含对象的个数算法在数据集的维数增加时具有较好的扩展性,但是时间复杂度的估算仅考虑了搜索时间,而构造索引的任务本身就需要密集复杂的计算量。

  基于距离的方法是一种常见的适用于各种数据域的异常检测算法,它基于最近邻距离来定义异常值。 此类方法不仅适用于多维数值数据,在其他许多领域,例如分类数据,文本数据,时间序列数据和序列数据等方面也有广泛的应用。
  基于距离的异常检测有这样一个前提假设,即异常点的 k k k 近邻距离要远大于正常点。解决问题的最简单方法是使用嵌套循环。 第一层循环遍历每个数据,第二层循环进行异常判断,需要计算当前点与其他点的距离,一旦已识别出多于 k k k 个数据点与当前点的距离在 D D D 之内,则将该点自动标记为非异常值。 这样计算的时间复杂度为 O ( N 2 ) O(N^{2}) O(N2),当数据量比较大时,这样计算是及不划算的。 因此,需要修剪方法以加快距离计算。

2.1 基于单元的方法

  在基于单元格的技术中,数据空间被划分为单元格,单元格的宽度是阈值D和数据维数d的函数。具体地说,每个维度被划分成宽度最多为 D 2 ⋅ d \frac{D}{{2 \cdot \sqrt d }} 2d D 单元格。在给定的单元以及相邻的单元中存在的数据点满足某些特性,这些特性可以让数据被更有效的处理。
在这里插入图片描述
  以二维情况为例,此时网格间的距离为 D 2 ⋅ d \frac{D}{{2 \cdot \sqrt d }} 2d D
(1)网格单元的数量基于数据空间的分区,并且与数据点的数量无关,这是决定该方法在低维数据上的效率的重要因素,在这种情况下,网格单元的数量可能不多
(2)此方法不适用于更高维度的数据。对于给定的单元格,其 L 1 L_{1} L1 邻居被定义为通过最多1个单元间的边界可从该单元到达的单元格的集合。 L 2 L_{2} L2 邻居是通过跨越2个或3个边界而获得的那些单元格。 上图中显示了标记为 X X X的特定单元格及其 L 1 L_{1} L1 L 2 L_{2} L2 邻居集。 显然,内部单元具有8个 L 1 L_{1} L1 邻居和40个 L 2 L_{2} L2 邻居。 然后,可以立即观察到以下性质:

  • 单元格中两点之间的距离最多为 D / 2 D/2 D/2
  • 一个点与 L 1 L_{1} L1 邻接点之间的距离最大为 D D D
  • 一个点与它的 L r Lr Lr 邻居(其中 r r r > 2)中的一个点之间的距离至少为 D D D

唯一无法直接得出结论的是 L 2 L_{2} L2 中的单元格。 这表示特定单元中数据点的不确定性区域。 对于这些情况,需要明确执行距离计算。 同时,可以定义许多规则,以便立即将部分数据点确定为异常值或非异常值。 规则如下:

  • 如果一个单元格中包含超过 k k k 个数据点及其 L 1 L_{1} L1 邻居,那么这些数据点都不是异常值。
  • 如果单元 A A A 及其相邻 L 1 L_{1} L1 L 2 L_{2} L2 中包含少于 k k k 个数据点,则单元A中的所有点都是异常值。

  此过程的第一步是将部分数据点直接标记为非异常值(如果由于第一个规则而导致它们的单元格包含 k k k 个点以上)。 此外,此类单元格的所有相邻单元格仅包含非异常值。 为了充分利用第一条规则的修剪能力,确定每个单元格及其 L 1 L_{1} L1 邻居中点的总和。 如果总数大于 k k k ,则所有这些点也都标记为非离群值。

2.2 基于索引的方法

  对于一个给定数据集,基于索引的方法利用多维索引结构(如 R \mathrm{R} R 树、 k − d k-d kd 树)来搜索每个数据对象 A A A 在半径 D D D 范围 内的相邻点。设 M M M 是一个异常值在其 D D D -邻域内允许含有对象的最多个数,若发现某个数据对象 A A A D D D -邻域内出现 M + 1 M+1 M+1 甚至更多个相邻点, 则判定对象 A A A 不是异常值。该算法时间复杂度在最坏情况下为 O ( k N 2 ) , O\left(k N^{2}\right), O(kN2), 其中 k k k 是数据集维数, N N N 是数据集包含对象的个数。该算法在数据集的维数增加时具有较好的扩展性,但是时间复杂度的估算仅考虑了搜索时间,而构造索引的任务本身就需要密集复杂的计算量。


3. 基于密度的度量

  基于密度的算法主要有局部离群因子(LocalOutlierFactor,LOF),以及LOCI、CLOF等基于LOF的改进算法。下面对LOF进行详细的介绍和实践。

基于密度的度量涉及的知识点有k距离,k距离邻域、可达距离、局部可达密度、局部异常因子
在这里插入图片描述
  基于距离的检测适用于各个集群的密度较为均匀的情况下图中,离群点B容易被检出,而若要检测出较为接近集群的离群点A,则可能会将一些集群边缘的点当作离群点丢弃。而LOF等基于密度的算法则可以较好地适应密度不同的集群情况。
在这里插入图片描述

 &emps; 那么,这个基于密度的度量值是怎么得来的呢?还是要从距离的计算开始。类似k近邻的思路,首先我们也需要来定义一个“k-距离”。


3.1 数据对象p的k距离(k-distance(p))

在这里插入图片描述

  对于数据集D中的某一个对象o,与其距离最近的k个相邻点的最远距离表示为k-distance(p),定义为给定点p和数据集D中对象o之间的距离d(p,o),满足:

  • 在集合D中至少有k个点 o’,其中 o ′ ∈ D { p } o'∈D\{p\} oD{p},满足 d ( p , o ′ ) ≤ d ( p , o ) d(p,o')≤d(p,o) d(p,o)d(p,o)
  • 在集合D中最多有k-1个点o’,其中 o ′ ∈ D { p } o'∈D\{p\} oD{p},满足 d ( p , o ; ) < d ( p , o ) d(p,o;)<d(p,o) d(p,o;)<d(p,o)

  直观一些理解,就是以对象o为中心,对数据集D中的所有点到o的距离进行排序,距离对象o第k近的点p与o之间的距离就是k-距离
在这里插入图片描述

3.2 k邻域

在这里插入图片描述

  由k-距离,我们扩展到一个点的集合——到对象o的距离小于等于k-距离的所有点的集合,我们称之为k-邻域: N k − d i s t a n c e ( p ) ( P ) = { q ∈ D \ { p } ∣ d ( p , q ) ≤ k − d i s t a n c e ( p ) } N_{k − d i s t a n c e ( p )}( P ) = \{ q ∈ D \backslash\{ p \} ∣ d ( p , q ) ≤ k − d i s t a n c e ( p )\} Nkdistance(p)(P)={qD\{p}d(p,q)kdistance(p)}
  在二维平面上展示出来的话,对象o的k-邻域实际上就是以对象o为圆心、k-距离为半径围成的圆形区域。就是说,k-邻域已经从“距离”这个概念延伸到“空间”了。

3.3 可达距离(reachability distance)

在这里插入图片描述

  有了邻域的概念,我们可以按照到对象o的距离远近,将数据集D内的点按照到o的距离分为两类:

  • p i p_i pi在对象o的k-邻域内,则可达距离就是给定点p关于对象o的k-距离;
  • p i p_i pi在对象o的k-邻域外,则可达距离就是给定点p关于对象o的实际距离。

  给定点p关于对象o的可达距离用数学公式可以表示为: r e a c h − d i s t k ( p , o ) = m a x { k − d i s t a n c e ( o ) , d ( p , o ) } r e a c h−d i s t_ k ( p , o ) = m a x \{k−distance( o ) , d ( p , o )\} reachdistk(p,o)=max{kdistance(o),d(p,o)}
  这样的分类处理可以简化后续的计算,同时让得到的数值区分度更高。

3.4 局部可达密度(local reachability density)在这里插入图片描述

  我们可以将“密度”直观地理解为点的聚集程度,就是说,点与点之间距离越短,则密度越大。在这里,我们使用数据集D中给定点p与对象o的k-邻域内所有点的可达距离平均值的倒数(注意,不是导数)来定义局部可达密度。
  给定点p的局部可达密度计算公式为: l r d M i n P t s ( p ) = 1 / ( ∑ o ∈ N M i n P t s ( p ) r e a c h − d i s t M i n P t s ( p , o ) ∣ N M i n P t s ( p ) ∣ ) lrd_{MinPts}(p)=1/(\frac {\sum\limits_{o∈N_{MinPts}(p)} reach-dist_{MinPts}(p,o)} {\left\vert N_{MinPts}(p) \right\vert}) lrdMinPts(p)=1/(NMinPts(p)oNMinPts(p)reachdistMinPts(p,o))
  由公式可以看出,这里是对给定点p进行度量,计算其邻域内的所有对象o到给定点p的可达距离平均值。给定点p的局部可达密度越高,越可能与其邻域内的点 属于同一簇;密度越低,越可能是离群点

3.5 局部异常因子LOF在这里插入图片描述

  LOF算法是基于密度的局部异常数据挖掘算法中较为经典的算法。该方法通过计算数据集中每个对象的局部异常因子LOF,来衡量数据对象的异常程度。如果局部异常因子越大,则认为该数据是异常数据对象的程度也就越大,反之则越小。LOF算法衡量一个数据对象是否是异常数据不仅仅取决于它与周围邻居之间距离的大小,而且还与它周围邻居的密度状况有关。
在这里插入图片描述
  表示点p的邻域 N k ( p ) N_k(p) Nk(p)内其他点的局部可达密度与点p的局部可达密度之比的平均数。如果这个比值越接近1,说明o的邻域点密度差不多,o可能和邻域同属一簇;如果这个比值小于1,说明o的密度高于其邻域点密度,o为密集点;如果这个比值大于1,说明o的密度小于其邻域点密度,o可能是异常点。

  • 比值≈1 属于统一簇
  • 比值<1 o为密集点
  • 比值>1 o为异常点

  最终得出的LOF数值,就是我们所需要的离群点分数。在sklearn中有LocalOutlierFactor库,可以直接调用。下面来直观感受一下LOF的图像呈现效果。
算法步骤
在这里插入图片描述

  LocalOutlierFactor库可以用于对单个数据集进行无监督的离群检测,也可以基于已有的正常数据集对新数据集进行新颖性检测。在这里我们进行单个数据集的无监督离群检测。

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from sklearn.neighbors import LocalOutlierFactor

plt.rcParams['font.sans-serif'] = ['SimSun']
plt.rcParams['axes.unicode_minus']=False
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

首先构造一个含有集群和离群点的数据集。该数据集包含两个密度不同的正态分布集群和一些离群点。但是,这里我们手工对数据点的标注其实是不准确的,可能有一些随机点会散落在集群内部,而一些集群点由于正态分布的特性,会与其余点的距离相对远一些。在这里我们无法进行区分,所以按照生成方式统一将它们标记为“集群内部的点”或者“离群点”。

np.random.seed(61)

#构造两个数据集
X_inliers1=0.2*np.random.randn(100,2)
X_inliers2=0.5*np.random.randn(100,2)
X_inliers=np.r_[X_inliers1+2,X_inliers2-2]
'''
np.r_是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等。
np.c_是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等。
'''


#构造一些离群的点
X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))

#拼成训练集
X=np.r_[X_inliers,X_outliers]

n_outliers=len(X_outliers) #离群点的个数
ground_truth=np.ones(len(X),dtype=int)
#打标签,群内点构造离群值为1,离群点构造离群值为-1
ground_truth[-n_outliers:]=-1 #最后20个为-1
ground_truth

在这里插入图片描述

plt.rcParams['font.sans-serif'] = ['SimSun']
plt.title('构造数据集(LOF)') 
plt.scatter(X[:-n_outliers,0],X[:-n_outliers,1],
           color='b',s=5,label='集群点')
plt.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1],
            color='orange', s=5, label='离群点')

plt.axis=('tight')
plt.xlim((-5,5))
plt.ylim((-5,5))
legend=plt.legend(loc='upper left')
legend.legendHandles[0]._sizes = [10]
legend.legendHandles[1]._sizes = [20]
plt.show()

在这里插入图片描述
然后使用LocalOutlierFactor库对构造数据集进行训练,得到训练的标签和训练分数(局部离群值)。为了便于图形化展示,这里对训练分数进行了一些转换。

#训练模型(找出每个数据的实际离群值)
clf=LocalOutlierFactor(n_neighbors=20,contamination=0.1)

#对单个数据集进行无监督预测时,以1和-1分别表示离群点和非离群点
y_pred=clf.fit_predict(X)

#找出构造离群值与实际离群值不同的点
n_errors=y_pred!=ground_truth
X_pred=np.c_[X,n_errors] #第三列为预测是否正确

X_scores = clf.negative_outlier_factor_

#实际离群值有正有负,转化为证书并保留期差异性(不是直接取绝对值,采用了标准化?)
X_scores_nor = (X_scores.max() - X_scores) / (X_scores.max() - X_scores.min())
X_pred=np.c_[X_pred,X_scores_nor]
X_pred = pd.DataFrame(X_pred,columns=['x','y','pred','scores'])


X_pred_same=X_pred[X_pred['pred']==False]
X_pred_different = X_pred[X_pred['pred'] == True]

X_pred

在这里插入图片描述
将训练分数(离群程度)用圆直观地表示出来,并对构造标签与训练标签不一致的数据用不同颜色的圆进行标注。

plt.title('局部离群因子检测(LOF)')
plt.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], color='b', s=5, label='集群点')
plt.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], color='orange', s=5, label='离群点')


#以标准化之后的局部离群值为半径画圆,以圆的大小直观表示出每个数据点的离群程度
plt.scatter(X_pred_same.values[:,0], X_pred_same.values[:, 1], 
            s=1000 * X_pred_same.values[:, 3], edgecolors='c', 
            facecolors='none', label='标签一致')

plt.scatter(X_pred_different.values[:, 0], X_pred_different.values[:, 1], 
            s=1000 * X_pred_different.values[:, 3], edgecolors='violet', 
            facecolors='none', label='标签不同')

#plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))

legend = plt.legend(loc='upper left')
legend.legendHandles[0]._sizes = [10]
legend.legendHandles[1]._sizes = [20]
plt.show()

在这里插入图片描述

可以看出,模型成功区分出了大部分的离群点,一些因为随机原因散落在集群内部的“离群点”也被识别为集群内部的点,但是一些与集群略为分散的“集群点”则被识别为离群点。
  同时可以看出,模型对于不同密度的集群有着较好的区分度,对于低密度集群与高密度集群使用了不同的密度阈值来区分是否离群点。
  因此,我们从直观上可以得到一个印象,即基于LOF模型的离群点识别在某些情况下,可能比基于某种统计学分布规则的识别更加符合实际情况。

4. 练习

1.学习使用PyOD库生成toy example并调用LOF算法
地址:https://mybinder.org/v2/gh/yzhao062/pyod/master

from pyod.models.lof import LOF
from pyod.utils.data import generate_data
from pyod.utils.data import evaluate_print
from pyod.utils.example import visualize

if __name__=='__main__':
    contamination=0.1 
    n_train=200
    n_test=100
    
    #生成数据
    X_train, y_train, X_test, y_test = \
        generate_data(n_train=n_train,
                      n_test=n_test,
                      n_features=2,
                      contamination=contamination,
                      random_state=42)
    
    clf_name='LOF'
    clf=LOF()
    clf.fit(X_train)
    
    y_train_pred = clf.labels_  
    y_train_scores = clf.decision_scores_  

    
    y_test_pred = clf.predict(X_test)  
    y_test_scores = clf.decision_function(X_test)  
    
    print("\nOn Training Data:")
    evaluate_print(clf_name, y_train, y_train_scores)
    print("\nOn Test Data:")
    evaluate_print(clf_name, y_test, y_test_scores)

    
    visualize(clf_name, X_train, y_train, X_test, y_test, y_train_pred,
              y_test_pred, show_figure=True, save_figure=False)

在这里插入图片描述

参考资料:

  1. LOF: Identifying Density-Based Local Outliers
  2. https://scikit-learn.org/stable/auto_examples/neighbors/plot_lof_outlier_detection.html?highlight=lof
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值