图像识别与分类是计算机视觉领域的核心任务之一。它涉及识别图像中的物体、场景或概念,并将它们归入预定义的类别。本文将向您介绍图像识别与分类的基本概念,并通过一个实际项目演示如何使用 Python 和深度学习框架 TensorFlow/Keras 实现图像识别与分类。
目录
1. 简介
在计算机视觉中,图像识别与分类的目标是根据图像内容将其分配给一个或多个类别。这个过程通常包括以下步骤:
- 数据预处理:包括缩放、裁剪、翻转等操作,以增强图像数据的多样性。
- 特征提取:从原始图像中提取有助于识别和分类的特征。
- 模型训练:使用监督学习算法训练模型以区分不同类别。
- 模型评估:使用一组测试数据评估模型的性能。
- 应用模型:将训练好的模型应用于新的未知图像,进行识别与分类。
接下来,我们将通过一个实际项目演示如何使用 TensorFlow/Keras 实现图像识别与分类。
2. 实战项目:CIFAR-10 图像分类
本项目将使用 CIFAR-10 数据集进行图像分类。CIFAR