基于深度学习的实时背景虚化解决方案需要多个步骤。这里我们提供一个使用 TensorFlow 和 OpenCV 的完整示例。为了简化问题,我们将使用 U-Net 进行图像分割。这个示例分为以下几个部分:
1. 数据预处理
2. 构建和训练 U-Net 模型
3. 应用模型进行实时背景虚化
### 第一部分:数据预处理
这个示例假设你已经有一个包含图像和对应前景(主体)分割掩码的数据集。你可以从现有的数据集开始,例如 [COCO 数据集](https://cocodataset.org/)。以下代码将图像数据加载到内存中,并将其分为训练、验证和测试集:
import os
import numpy as np
import cv2
from sklearn.model_selection import train_test_split
def load_data(image_dir, mask_dir, image_size=(256, 256)):
image_files = os.listdir(image_dir)
mask_files = os.listdir(mask_dir)
images = []
masks = []
for img_file, mask_file in zip(image_files, mask_files):
img = cv2.imread(os.