【学习笔记】Probabilistic Diffusion Model

本文探讨了概率扩散模型的基础,包括条件概率、高斯分布的KL散度、VAE(变分自编码器)及其多层扩展。详细介绍了扩散过程、逆扩散过程以及后验条件概率的计算,最后讨论了目标数据分布的似然函数。内容结合了马尔可夫假设和高斯分布理论,适用于机器学习和人工智能的学习者。
摘要由CSDN通过智能技术生成

本文内容核心内容非原创,大部分摘抄自该视频教程,详细讲解请移步原视频。个人在此基础上添加补充了一些公式的推导和证明,仅供学习参考,如有任何疑问欢迎在评论区指出。

一. 条件概率公式和高斯分布的KL散度

1. 条件概率的一般形式

P(A,B,C) = P(C|B,A) P(B,A) = P(C|B,A) P(B|A) P(A)

P(B,C|A) = \frac{P(A,B,C)}{P(A)} = \frac{P(B,A)}{P(A)} \cdot \frac{P(A,B,C)}{P(B,A)} = P(B|A) P(C|B,A)

2. 基于马尔可夫假设的条件概率

如果A、B、C满足马尔可夫关系A \rightarrow B \rightarrow C,那么有

P(A,B,C) = P(C|B,A) P(B|A) P(A) = P(C|B) P(B|A) P(A)

P(B,C|A) = P(B|A) P(C|B,A) = P(B|A) P(C|B)

3. 高斯分布的KL散度公式

对于两个(连续型)随机变量,它们的KL散度定义为:

D_{KL}(P||Q) = \int_{-\infty}^{\infty} p(x) ln\frac{p(x)}{q(x)}dx

P \sim N(\mu_1, \sigma_1^2), Q \sim N(\mu_2, \sigma_2^2),则有结论:

D_{KL}({P||Q}) = log\frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}

证明:

p(x) = (2\pi \sigma_1^2)^{-\frac{1}{2}} exp\{ -\frac{1}{2\sigma_1^2}(x-\mu_1)^2 \}

q(x) = (2\pi \sigma_2^2)^{-\frac{1}{2}} exp\{ -\frac{1}{2\sigma_2^2}(x-\mu_2)^2 \}

\Rightarrow \frac{p(x)}{q(x)} = (\frac{\sigma_1^2}{\sigma_2^2})^{-\frac{1}{2}} exp\{ -[\frac{1}{2\sigma_1^2}(x-\mu_1)^2 - \frac{1}{2\sigma_2^2}(x-\mu_2)^2] \}

log(\frac{p(x)}{q(x)}) = log\frac{\sigma_2}{\sigma_1} - [\frac{1}{2\sigma_1^2}(x-\mu_1)^2 - \frac{1}{2\sigma_2^2}(x-\mu_2)^2]

由于p(x)是均值为\mu_1,方差为\sigma_1^2的高斯分布的密度函数,其有如下性质:

(1)\int_{-\infty}^{\infty} p(x) dx = 1

  (2)\mathbb{E} [P] = \int_{-\infty}^{\infty} x p(x) dx = \mu_1

  (3)Var(P) = \int_{-\infty}^{\infty} (x-\mu_1)^2 p(x) dx = \sigma_1^2

  (4) \mathbb{E} [P^2] = \int_{-\infty}^{\infty}x^2 p(x) dx = Var(P) + \mathbb{E}^2[P] = \sigma_1^2 + \mu_1^2

于是KL散度公式可化简为:

\begin{align*} D_{KL}(P||Q) &= \int_{-\infty}^{\infty} p(x) log(\frac{\sigma_2}{\sigma_1}) dx - \frac{1}{2\sigma_1^2}\int_{-\infty}^{\infty}(x-\mu_1)^2 p(x) dx + \frac{1}{2\sigma_2^2}\int_{-\infty}^{\infty}(x-\mu_2)^2 p(x) dx \\ &= log(\frac{\sigma_2}{\sigma_1}) - \frac{\sigma_1^2}{2\sigma_1^2} + \frac{1}{2\sigma_2^2}[\int_{-\infty}^{\infty} x^2p(x)dx - 2\mu_2\int_{-\infty}^{\infty} xp(x)dx + \mu_2^2 \int_{-\infty}^{\infty} p(x)dx] \\ &= log(\frac{\sigma_2}{\sigma_1}) - \frac{1}{2} + \frac{1}{2\sigma_2^2}[\sigma_1^2 + \mu_1^2 - 2\mu_1\mu_2 + \mu_2^2] \\ &= log(\frac{\sigma_2}{\sigma_1}) + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2} \end{align*}

4. 参数重整化

我们希望学习一个高斯分布的均值和方差,但由于采样过程对于\mu\sigma^2不可导,不能直接从高斯分布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值