l2高斯分布_L1和L2正则的区别,如何选择L1和L2正则?L1在0处不可导,怎么处理...

db178d2bba9667c7a4ff2d62c22f0d79.png

首先毫无疑问的,他们都是可以防止过拟合,降低模型复杂度

L1是在loss function后面加上模型参数的1范数(也就是|xi|)L0范数的最小化问题在实际应用中是NP难问题,无法实际应用。L2是在loss function后面加上模型参数的2范数(也就是sigma(xi^2)),注意L2范数的定义是sqrt(sigma(xi^2)),在正则项上没有添加sqrt根号是为了更加容易优化。

L1 会产生稀疏的特征,L2 会产生更多地特征但是都会接近于0。L1在特征选择时候非常有用,而L2就只是一种规则化而已。具体的L1为什么会产生稀疏的特征,请看这里,说的很详细。

L1对应拉普拉斯分布,L2对应高斯分布。

L1不可导可以使用Proximal Algorithms或者ADMM来解决。

有关L0正则化的这里没说,可以看这里L0正则化

机器学习中的范数规则化之(一)L0、L1与L2范数 - zouxy09的专栏 - CSDN博客
机器学习中正则化项L1和L2的直观理解 - CSDN博客
机器学习中的范数规则化之(一)L0、L1与L2范数 - zouxy09的专栏 - CSDN博客

欢迎关注我的公众号,第一时间追踪相关面试题和总结:百面机器学习。回复干货获取相关资料和面试题总结(定期更新)。

19002a176202635f9cc3ba8d31217bba.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值