横向联邦学习下隐私保护安全聚合:问题,方法,与展望

本文探讨了横向联邦学习中隐私保护的安全聚合技术,包括成对加性掩码、同态加密和秘密分享等方案,分析了各种方法的优缺点及适用场景,并提出了对未来的展望。
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值