matlab实现蒙特卡洛方法求解线性规划问题

蒙特卡洛法:

    某些问题而言,利用穷举法,会导致计算量过大。蒙特卡洛就是随机生成很多解,然后不断寻找更好的解。到了一定次数,结果就会很接近。

具体问题:

目标函数写成Max

条件:条件<=0(代码里面假设有四个)

代码:

首先根据目标和条件给定函数mengte()

function  [f,g]=mengte(x);

f=目标函数

g=[条件1

条件2

条件3

条件4

]

然后,再写出关于蒙特卡洛的具体程序M

p0=0;

for i=1:10^6

x=99*rand(5,1) %5行1列的随机数,由于x的范围在1~99,所以乘99

x1=floor(x0);x2=ceil(x0); %floor向下求整,ceil向上求整,符合整数要求

[f,g]=mengte[x1];

     if  sum(g<=0)==4 %满足规划要求条件

          if p0<f

             x0=x1;p0=f;       %如果有更好地结果,进行替换

         end 

      end 

[f,g]=mengte[x2];

     if  sum(g<=0)==4

          if p0<f

             x0=x1;p0=f

         end 

      end 

end

x0,p0

end

程序参考:《数模大全》司守奎

### 蒙特卡洛模拟的MATLAB代码实例 为了展示如何利用MATLAB实现蒙特卡洛方法来模拟随机过程并计算其统计特性,下面提供了一个简单的例子。此示例展示了通过蒙特卡洛方法估计正态分布均值的过程。 ```matlab % 参数设置 num_samples = 1000; % 抽样数量 mu_true = 5; % 正态分布的真实均值 sigma_true = 2; % 正态分布的标准差 % 随机抽样 samples = normrnd(mu_true, sigma_true, [1, num_samples]); % 计算样本均值作为估计量 estimated_mean = mean(samples); % 显示结果 fprintf('真实均值: %.2f\n', mu_true); fprintf('估计均值 (基于%d次采样): %.2f\n', num_samples, estimated_mean); % 绘制直方图查看数据分布情况 figure; histogram(samples, 'Normalization', 'pdf'); hold on; % 添加理论概率密度函数曲线对比 x_values = linspace(min(samples), max(samples), 1000); y_values = normpdf(x_values, mu_true, sigma_true); plot(x_values, y_values, '-r', 'LineWidth', 2); title('Histogram of Samples vs True Normal Distribution PDF'); xlabel('Value'); ylabel('Probability Density'); legend('Sample Histogram', 'True PDF'); grid on; ``` 这段代码首先定义了一些参数用于生成服从特定正态分布的数据集;接着调用了`normrnd()`函数来进行实际的随机数抽取操作;最后通过对这些数值求平均值得到了对于该分布均值的一个无偏估计,并绘制了相应的频率直方图以便直观观察所得到的结果与理论模型之间的吻合程度[^1]。 上述程序不仅实现了基本的蒙特卡罗模拟流程——即重复执行实验以获得大量独立同分布(IID)观测值进而推断总体特征——同时也体现了此类技术在处理不确定性问题上的灵活性和强大能力[^2]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值