矩阵行列式的复习

文章介绍了二阶和三阶行列式的表示方法,重点讨论了逆序数的概念,它定义了一个排列中较大数在较小数前面的组合数量。通过举例说明,证明了排列经一次对换后奇偶性的变化规律。此外,还提到了上三角、下三角和对角线行列式的代数表达形式。
摘要由CSDN通过智能技术生成

1 二阶行列式

\left| \begin{aligned} a_{11} \ a_{12} \\ a_{21} \ a_{22 } \end{aligned} \right | = \begin{aligned} a_{11} a_{22} - a_{12}a_{21}\end{aligned} 可以用D来表达行列式D = \left| \begin{aligned} a_{11} \ a_{12} \\ a_{21} \ a_{22 } \end{aligned} \right | = \begin{aligned} a_{11} a_{22} - a_{12}a_{21}\end{aligned} 

 

2 三阶行列式

\left| \begin{aligned} a_{11} \ a_{12} \ a_{13} \\ a_{21} \ a_{22} \ a_{23} \\ \ a_{31} \ a_{32} \ a_{33} \end{aligned} \right | = \begin{aligned} a_{11} a_{22}a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} -a_{12} a_{21} a_{33}- a_{11} a_{23} a_{32}\end{aligned}

2.1 逆序数

一个n级排列\begin{aligned} i_{1}i_{2}{...}i_{n} \end{aligned},如果一个较大的数\begin{aligned} i_{t} \end{aligned}排在较小的数\begin{aligned} i_{s} \end{aligned}前面(\begin{aligned} i_{s}< i_{t} \end{aligned}),构成一个逆序,一个n级排序中逆序的总数,称为逆序数.记 N(\begin{aligned} i_{1}i_{2}{...}i_{n} \end{aligned})

123 = N(0)  ,132 = N(1) ,213=N(1) 231= N(2)

定理:任意一个排列经过一个对换后奇偶性改变

123 = N(0)  ,偶排列

132 = N(1) ,与(123 )2,3对换后 变奇排列

213=N(1),  与(123)1,2对换后 变奇排列

231= N(2) ,与(213) 13对换后,变偶排列

3,n阶行列式

\left| \begin{aligned} a_{11} \ a_{12} \ {...}\ a_{1n} \\ a_{21} \ a_{22} \ {...} \ a_{2n} \\ \ {...} \ {...} \ { } \ {...} \ {...} \ {...} \\ \ a_{n1} \ a_{n2} \ {...} \ a_{33} \end{aligned} \right |

行列式的代数表达:\begin{aligned} (-1)^{N(j_{1}j_{1}{...}j_{n})} a_{1j1}a_{2j2}{...} a_{njn}\end{aligned}

上三角,下三角,对角线的均为n阶行列式为

\left| \begin{aligned} a_{11} \ {0} \ 0 \ {...}\ 0 \\ a_{21} \ a_{22} \ {0} \ {...} \ 0 \\ a_{31} \ a_{32} \ a_{33} \ {0} \ {...} \ 0 \\ \ {...} \ {...} \ { } \ {...} \ {...} \ {...} \\ \ a_{n1} \ a_{n2} \ a_{n3} \ {...} \ a_{nn} \end{aligned} \right | = \begin{aligned} a_{11}a_{22}a_{33}{...}a_{nn}\end{aligned}

类似的山寨版的上三角,下三角行列式:

\left| \begin{aligned} a_{11} \ a_{12} \ a_{13} \ {...}\ a_{1n-1} \ a_{1n} \\ a_{21} \ a_{22} \ {...} a_{2n-1} \ a_{0} \\ a_{31} \ a_{32} \ a_{33}\ {...} \ {0} \ 0 \\ \ {...} \ {...} \ { } \ {...} \ {...} \ {...} \\ \ a_{n1} \ {0} \ {...} \ {...} \ {0} \ {0} \end{aligned} \right | = \begin{aligned} (-1)^{\frac {n(n-1)}{2}}a_{1n}a_{2n-1}{...}a_{n1}\end{aligned}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值