《机器学习线性代数基础:Python语言描述》读书笔记----变换基底时的坐标换算

同一个向量在不同基底下的坐标计算。

坐标的表示是基于基底的

先来个简单的例子:在默认基底 ( a = [ 1 , 0 ] T , b = [ 0 , 1 ] T (a=[1,0]^T,b=[0,1]^T (a=[1,0]T,b=[0,1]T下,有向量 u = [ 3 , 3 ] T u=[3,3]^T u=[3,3]T,u的完整表达其实为
u = 3 a + 3 b = 3 [ 1 0 ] + 3 [ 0 1 ] = [ 3 ∗ 1 + 3 ∗ 0 3 ∗ 0 + 3 ∗ 1 ] = [ 3 3 ] u = 3a+3b=3\begin{bmatrix}1\\0\end{bmatrix}+3\begin{bmatrix}0\\1\end{bmatrix}=\begin{bmatrix}3*1+3*0\\3*0+3*1\end{bmatrix}=\begin{bmatrix}3\\3\end{bmatrix} u=3a+3b=3[10]+3[01]=[31+3030+31]=[33]
若将基底换为 ( a ∗ = [ 1 , 2 ] T , b ∗ = [ 2 , 1 ] T ) (a^*=[1,2]^T,b^*=[2,1]^T) (a=[1,2]T,b=[2,1]T,此时u的坐标要如何计算。下面给出两种方法:

方法一:
u = 3 a + 3 b 设 新 坐 标 为 ( m , n ) , 则 在 新 基 底 下 u = m a ∗ + n b ∗ = m ( a + 2 b ) + n ( 2 a + b ) u = ( m + 2 n ) a + ( 2 m + n ) b m + 2 n = 3 ; 2 n + m = 3 ; m = n = 1 u = 3a+3b\\ 设新坐标为(m,n),则在新基底下\\ u = ma^*+nb^*=m(a+2b)+n(2a+b)\\ u = (m+2n)a+(2m+n)b\\ m+2n = 3;\\ 2n+m = 3;\\ m = n = 1 u=3a+3b(m,n)u=ma+nb=m(a+2b)+n(2a+b)u=(m+2n)a+(2m+n)bm+2n=3;2n+m=3;m=n=1
新坐标为(1,1)

方法二:

还是先给出在a,b为基底下视角,基底 a ∗ , b ∗ a^*,b^* a,b下,u的表达
u = [ 1 2 2 1 ] [ 1 1 ] = [ 3 , 3 ] T u = \begin{bmatrix}1&2\\2&1\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}=[3,3]^T u=[1221][11]=[3,3]T
这里回顾一个知识,矩阵乘以向量从空间上看是改变向量的空间位置,在矩阵满足基底条件下,其实就是变换坐标的基底,将其变为在新基底下的坐标。

a ∗ , b ∗ a^*,b^* a,b作为基底时,其实对于这个基底的向量所描述坐标, a ∗ , b ∗ a^*,b^* a,b就是 [ 1 0 0 1 ] \begin{bmatrix}1&0\\0&1\end{bmatrix} [1001],但是在a,b为基底的视角看,KaTeX parse error: Expected 'EOF', got '&' at position 5: [a^*&̲b^*] = \begin{b…,因此,首先要把a,b的基底换为 ( a ∗ , b ∗ ) (a^*, b^*) (a,b),如a转换基底后,为:
[ 1 2 2 1 ] [ 1 0 ] = [ 3 , 0 ] T \begin{bmatrix}1&2\\2&1\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix}=[3,0]^T [1221][10]=[3,0]T
同理得: b = [ 0 , 3 ] T b=[0,3]^T b=[0,3]T

此时要把在基底 ( a ∗ , b ∗ ) (a^*,b^*) (a,b)下的 u = [ 1 , 1 ] u=[1,1] u=[1,1],即
[ 3 0 0 3 ] [ 1 1 ] = [ 3 , 3 ] T \begin{bmatrix}3&0\\0&3\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}=[3,3]^T [3003][11]=[3,3]T
可见 [ 3 0 0 3 ] \begin{bmatrix}3&0\\0&3\end{bmatrix} [3003]就是两个描述的转换矩阵,乘以它的逆矩阵就可以从默认空间转过去。

方法三 :

设在 ( a ∗ , b ∗ ) (a^*,b^*) (a,b)基底下的坐标为(m,n)
[ 1 2 2 1 ] [ m n ] = [ 3 3 ] \begin{bmatrix}1&2\\2&1\end{bmatrix}\begin{bmatrix}m\\n\end{bmatrix}=\begin{bmatrix}3\\3\end{bmatrix} [1221][mn]=[33]
得m=n=1

其实三种方法的核心思想就是矩阵乘以向量就是变换基底(假设这个矩阵是符合一个基底的条件的),根据这个思想,其实怎么解都是可以的。

参考资料:https://zhuanlan.zhihu.com/p/151192770

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值