线性代数的本质 - 09 - 基变换

基变换

同一个向量,同不同的基表示,会得到不同的结果。

假如现在有一组新的基底 b1=[21] b 1 = [ 2 1 ] b2=[11] b 2 = [ − 1 1 ] ,令 A=[b1b2] A = [ b 1 b 2 ]

如何在不同基底之间转换是我们要考虑的问题。

假如一个用 b1 b 1 b2 b 2 表示的向量是 [12] [ − 1 2 ] ,那么这个向量用我们的 i^ i ^ j^ j ^ 表示的话该是多少呢?

1×[21]+2×[11]=[41] − 1 × [ 2 1 ] + 2 × [ − 1 1 ] = [ − 4 1 ]

我们就是用 [41] [ − 4 1 ] 来描述“新环境”里的 [12] [ − 1 2 ] 的,上面这个过程很熟悉,就是一个矩阵乘法 [2111][12]=1×[21]+2×[11]=[41] [ 2 − 1 1 1 ] [ − 1 2 ] = − 1 × [ 2 1 ] + 2 × [ − 1 1 ] = [ − 4 1 ]

而矩阵乘法就是一个特定的线性变换,所以这里就很好理解: A A 可以看作一个线性变换,它将我们的基向量i^ j^ j ^ 变换成新的基向量。

那如何计算基向量为 i^ i ^ j^ j ^ 的向量在“新环境”中的坐标呢?

很简单, A1v⃗  A − 1 v → 就可以了,以上就是坐标系中单个向量之间的转化。

如何用 M M 空间的语言表示 M 空间的线性变换呢,比如将 M M 空间逆时针转90度?

  • 假设有一 A 空间的向量 v⃗  v → ,我们首先把它通过 Av⃗  A v → 换成标准空间的坐标表示。

    • 然后得到的向量逆时针旋转90度,假设这个变化是 M M ,那变换后的坐标就是 MAv
      • 再把这个坐标换回 A A 空间下的表示,A1MAv,这样就得到了 A A 空间下的向量经过一个 M 线性变换后得到的向量坐标。
      • A1MA A − 1 M A 描述的就是一个用 A A 空间的语言描述的线性变换,这个线性变换在标准空间的效果是 M.它接收一个用 A A 空间语言描述的向量,输出一个变换后的用 A 空间语言描述的向量。

        总的来说,每当看到这样一个表达式: A1MA A − 1 M A ,这就暗示着一种数学上的转移作用。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值