yolov8目标检测如何设置背景/无标签图像参与训练

背景

在开发深度学习模型的时候,总有一些图像会造成误检,这时候就需要将这些误检的图像不进行标注加入训练,让模型知道这里是一个不需要检测的“背景”,减少模型的误检率。
而在网上搜了一大堆之后,发现并没有单独介绍这方面的文章,因此在这里做一个简单的文章进行介绍。

1、yolov8的数据集加载逻辑

第一步:首先通过图像路径得到所有图像的绝对文件路径列表
图像加载逻辑
第二步:再通过img2label_paths这个函数将图像路径转换为标签文件路径,感兴趣的可以再去看看这个函数,所以这里需要划重点!!!,yolov8不是靠给定的标签文件路径去寻找标签文件,而是将图像文件路径转换为标签路径

在这里插入图片描述
第三步:通过一个进程池和verify_image_label函数将所有的标签文件加载到内存里
在这里插入图片描述
点进这个函数,我把标签文件存在的加载代码折叠了,只看标签文件不存在时的的代码,可以发现这里将nm置为了1.,也就是不存在标签,这个只作为一个计数使用。重点是下面这一行。对于没有标签的图像,yolov8生成了一个空白的标签,并且将这个空白标签作为真实的标签进行训练

在这里插入图片描述

总结

yolov8将背景图像加入训练,不是生成一个空白的标签文件,而是将背景图像直接放入训练集即可

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值