开源、离线、免费商用的大模型知识库来袭!快速搭建个人和企业私有智能知识库!

你是否也有这样的桌面?为了方便找材料,全部放到了桌面,最后结果就是“用起一时爽,找起火葬场”

(图片来源于网络)

你是否也是盘即个人电脑磁使再怎么不够用,也舍不得删除几年前做的运维方案、架构方案、设计方案文档?最后即使文档都保存了,存云盘了,到用的时候依旧发现找不到,找的也不是想要的。

|大模型知识库来袭

现在不用再担心了找不到材料文档了,GitHub开源了一款可离线,支持检索增强生成(RAG)大模型的知识库项目。虽然开源时间不长,但是势头很猛,已经斩获25K Star。具备以下特点:

  • 项目利用 langchain 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案;

  • 项目支持的开源 LLM 与 Embedding 模型,本项目可实现全部使用开源模型离线私有部署。与此同时,本项目也支持 OpenAI GPT API 的调用,并将在后续持续扩充对各类模型及模型 API 的接入;

  • 项目方案采用Apache License,可以免费商用,无需付费。

总结下重点就是:

  • 支持中文,可私有化部署,免费商用!

  • 支持中文,可私有化部署,免费商用!

  • 支持中文,可私有化部署,免费商用!

重要的事情说三遍********

项目名称:Langchain-Chatchat``项目地址:https://github.com/chatchat-space/Langchain-Chatchat

📺 原理介绍视频(点击可看视频)

从文档处理角度来看,实现流程如下:

技术路线图:

  • Langchain 应用

  • 基础React形式的Agent实现,包括调用计算器等

  • Langchain 自带的Agent实现和调用

  • 智能调用不同的数据库和联网知识

  • Bing 搜索

  • DuckDuckGo 搜索

  • Metaphor 搜索

  • 接入非结构化文档

  • 结构化数据接入

  • 分词及召回

  • .txt, .rtf, .epub, .srt

  • .eml, .msg

  • .html, .xml, .toml, .mhtml

  • .json, .jsonl

  • .md, .rst

  • .docx, .doc, .pptx, .ppt, .odt

  • .enex

  • .pdf

  • .jpg, .jpeg, .png, .bmp

  • .py, .ipynb

  • .csv, .tsv

  • .xlsx, .xls, .xlsd

  • 接入不同类型 TextSplitter

  • 优化依据中文标点符号设计的 ChineseTextSplitter

  • 本地数据接入

  • 搜索引擎接入

  • Agent 实现

  • LLM 模型接入

  • 支持通过调用 FastChat api 调用 llm

  • 支持 ChatGLM API 等 LLM API 的接入

  • 支持 Langchain 框架支持的LLM API 接入

  • Embedding 模型接入

  • 支持调用 HuggingFace 中各开源 Emebdding 模型

  • 支持 OpenAI Embedding API 等 Embedding API 的接入

  • 支持 智谱AI、百度千帆、千问、MiniMax 等在线 Embedding API 的接入

  • 基于 FastAPI 的 API 方式调用

  • Web UI

  • 基于 Streamlit 的 Web UI

**|**大模型知识库来袭

Docker 部署

一行代码搞定,但是建议网速不好的同学不要尝试

docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.7

常规模式本地部署方案

1. 环境配置

# 首先,确信你的机器安装了 Python 3.8 - 3.10 版本``$ python --version``Python 3.8.13``   ``# 如果低于这个版本,可使用conda安装环境``$ conda create -p /your_path/env_name python=3.8``   ``# 激活环境``$ source activate /your_path/env_name``   ``# 或,conda安装,不指定路径, 注意以下,都将/your_path/env_name替换为env_name``$ conda create -n env_name python=3.8``$ conda activate env_name # Activate the environment``   ``# 更新py库``$ pip3 install --upgrade pip``   ``# 关闭环境``$ source deactivate /your_path/env_name``   ``# 删除环境``$ conda env remove -p  /your_path/env_name

接着,开始安装项目的依赖

# 拉取仓库``$ git clone --recursive https://github.com/chatchat-space/Langchain-Chatchat.git``   ``# 进入目录``$ cd Langchain-Chatchat``   ``# 安装全部依赖``$ pip install -r requirements.txt``   ``# 默认依赖包括基本运行环境(FAISS向量库)。以下是可选依赖:``- 如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。``- 如果要开启 OCR GPU 加速,请安装 rapidocr_paddle[gpu]``- 如果要使用在线 API 模型,请安装对用的 SDK``   

此外,为方便用户 API 与 webui 分离运行,可单独根据运行需求安装依赖包。

  • 如果只需运行 API,可执行:
$ pip install -r requirements_api.txt``   ``# 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。
  • 如果只需运行 WebUI,可执行:
$ pip install -r requirements_webui.txt

2. 模型下载

如需在本地或离线环境下运行本项目,需要首先将项目所需的模型下载至本地,通常开源 LLM 与 Embedding 模型可以从 HuggingFace 下载。

以本项目中默认使用的 LLM 模型 THUDM/ChatGLM3-6B 与 Embedding 模型 BAAI/bge-large-zh 为例:

下载模型需要先安装 Git LFS ,然后运行

$ git lfs install``$ git clone https://huggingface.co/THUDM/chatglm3-6b``$ git clone https://huggingface.co/BAAI/bge-large-zh

3. 初始化知识库和配置文件

按照下列方式初始化自己的知识库和简单的复制配置文件

$ python copy_config_example.py``$ python init_database.py --recreate-vs

4. 一键启动

按照以下命令启动项目

$ python startup.py -a

最轻模式本地部署方案

该模式的配置方式与常规模式相同,但无需安装 torch 等重依赖,通过在线API实现 LLM 和 Ebeddings 相关功能,适合没有显卡的电脑使用。

$ pip install -r requirements_lite.txt``$ python startup.py -a --lite

Demo示例

  • Web UI 对话界面:

  • Web UI 知识库管理页面:

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

<think>嗯,用户想了解如何在企业知识库中实施RAG(检索增强生成)方案。首先,我需要回顾一下RAG的基本原理现有的开源项目,比如QAnythingElasticSearch-Langchain。记得RAG结合了检索模型生成模型,利用私有数据增强生成结果,适合解决数据时效性隐私问题。 用户可能关心实施方案的具体步骤,我需要分阶段说明。第一阶段是知识库构建,包括数据收集处理。企业可能有多种格式的文档,比如PDF、Word等,所以需要解析工具。例如,QAnything支持多格式文档解析,可能是一个好的参考[^1]。另外,数据清洗分块也很重要,尤其是处理长文本时,合理的分块策略能提升检索效果。 接下来是检索系统设计。这里需要考虑混合检索,结合Elasticsearch的关键词检索向量检索,提高准确性召回率。引用中提到Elasticsearch-Langchain项目,可能提供了相关实现方法[^2]。同时,优化检索效率,比如使用Faiss或HNSW进行向量索引,可以加速查询。 然后是生成模型部分。选择合适的LLM,如开源的Llama 2或商用API,需根据企业需求平衡性能成本。提示词工程也很关键,设计清晰的指令让模型生成符合需求的回答。可能还需要微调模型,使其更适应特定领域的数据,提升生成质量。 部署优化阶段,需要考虑本地化部署,确保数据安全。引用中的项目提到完全本地化推理,适合企业私域部署[^4]。此外,持续监控反馈机制能帮助系统迭代优化,比如用户反馈错误答案,调整检索策略或模型参数。 用户可能还想知道如何保障数据安全,这一点在方案中应强调私有部署访问控制。同时,如何处理非结构化数据,可能需要OCR或表格解析技术,QAnything已经支持这些功能。 最后,生成相关问题时要覆盖用户可能的后续疑问,比如数据准备、混合检索优势、本地化部署安全措施,以及评估方法。确保回答结构清晰,步骤明确,引用相关项目作为示例,增强可信度。</think>### RAG在企业知识库的落地实施方案 #### 一、核心架构设计 RAG系统需包含知识库构建、检索增强、生成优化三大模块。典型流程为: 1. **知识库构建**:解析企业文档(PDF、Word等),提取结构化/非结构化数据 2. **检索阶段**:通过混合检索(关键词+向量)获取相关知识片段 3. **生成阶段**:将检索结果输入大语言模型生成最终回答 示例系统架构: ``` $$ \begin{array}{ccc} \text{企业文档} & \rightarrow & \text{解析模块} \\ & & \downarrow \\ \text{向量数据库} & \leftarrow & \text{Embedding模型} \\ & & \uparrow \\ \text{用户查询} & \rightarrow & \text{混合检索} \rightarrow \text{LLM生成} \end{array} $$ ``` #### 二、实施步骤分解 1. **知识库构建阶段** - 数据采集:对接企业知识管理系统,支持PDF解析(引用QAnything的文档解析能力) - 数据清洗:去除重复/无效内容,使用正则表达式处理特殊格式 - 分块策略:采用滑动窗口算法,设置$window\_size=512$,$overlap=64$字符 2. **检索系统设计 - 混合检索实现: $$ score = \alpha \cdot BM25(q,d) + (1-\alpha) \cdot cosine\_similarity(v_q,v_d) $$ 其中$\alpha$取值建议0.3-0.7 - 使用Elasticsearch搭建关键词检索服务,结合Faiss构建向量索引[^3] 3. **生成优化策略 - 提示词工程模板: ```text 你是一个企业知识助手,请根据以下上下文: {context_str} 回答问题:{query_str} 若信息不足请回答"不清楚" ``` #### 三、关键实现技术 | 模块 | 技术选型 | 开源方案参考 | |------|----------|--------------| | 文档解析 | PDFplumber, Unstructured | QAnything | | 向量模型 | BGE-M3, Text2Vec | HuggingFace Models | | 检索框架 | Elasticsearch+Langchain | ElasticSearch-Langchain项目[^2] | | 生成模型 | Llama2-13B, ChatGLM3 | 本地化部署方案 | #### 四、企业级优化建议 1. **数据安全**:采用全链路加密传输,支持GPU裸金属部署 2. **性能优化**:建立缓存机制,对高频查询实现响应时间<500ms 3. **效果评估**:构建测试集验证指标: - 检索召回率$Recall@5 > 85%$ - 生成准确率$Accuracy > 90%$ - 幻觉率$Hallucination\_Rate < 5%$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值