【python】Tensor和Array对比

区别ArrayTensor
类型uint8,float32系列{}
各类型相互转换uint8转float64:image = image * (2. / 255.) - 1   float64转uint8:image.astype(np.uint8){}
扩充维度image[np.newaxis, :]tf.expand_dims(image,axis=0)
数组拼接np.concatenate([image, image], axis=0)tf.concat([frame,frame],axis=0)
相互转换image.eval()tf.convert_to_tensor(image)
拼接np.concat, np.concatenate, np.stack, image.append等tf.stack, tf.concat

##array的一些操作

  1. 获取shape:score.shape #(1, 257, 257)
  2. 转换成list:score.get_shape().as_list() #[1, 257, 257]
  3. list前再扩充一维: [1] + score.get_shape().as_list() #[1, 1, 257, 257]
  4. x_crops是(1, 3, 255, 255, 3),将前两维合并:
    x_crops = tf.reshape(x_crops, [x_crops_shape[0] * x_crops_shape[1]] + x_crops_shape[2: ])
  5. numpy数组堆叠
    z.shape本来是(1,127,127,3),想要堆叠成(3,127,127,3)
    np.stack([z_crops_hog,z_crops_hog,z_crops_hog])后,变成了(3, 1, 127, 127, 3),

vstack 按行堆叠
hstack 按列堆叠

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值