人工智能-不确定性的量化

文章探讨了贝叶斯网络中的独立性原则以及D-separation在判断变量间关系中的应用。同时,解释了隐马尔可夫模型在处理观察变量和隐藏变量概率问题上的方法,强调了修正概率计算的重要性。内容还涉及状态序列概率的计算,特别是如何根据前序状态推断后续状态的概率。
摘要由CSDN通过智能技术生成

这一部分的重点内容有:

  • 贝叶斯规则
  • 贝叶斯网络
  • 基于隐马尔可夫模型的概率推理

大概会有以下几种考察形式,有答案的历年期末考试题只解释一些注意的地方

贝叶斯网络-独立性

第二问答案很详细,第一问看↓,但答案疑似有误。

D-separation: 判断贝叶斯网络中的变量是否独立 - 知乎

贝叶斯网络

答案省去了S,但是感觉还是标出来更好,不影响计算结果。

隐马尔可夫模型-根据观察变量求隐藏变量概率

本题是小班讨论的题目,计算隐藏变量的概率,要使用修正过后的概率(即P(R|u))作为当天下不下雨的概率,最可能的状态就是概率大的(下雨/不下雨)。下面图中计算时都有一个位置标错了,计算修正概率时,后面乘的应该是P(R_{i-1}|u_{i-1})

隐马尔可夫模型-状态序列概率

这道题求的是整个序列出现的概率,因此第一天求的是P(good&bar),心情为good是如果他来了酒吧,就一定能通过观察确定的(对于题中给定的条件),因此概率为P(good)P(bar),而P(good)为1。从第二天开始,求的概率是在第一天的心情基础上,第二天的心情为各种情况并且他来了酒吧的概率,应该是P(2-good/bad/normal&bar),这里答案没体现出&bar,实际上是乘上了各种心情来bar的概率的。最后一天类似。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值