神经网络_第一篇种类(3)_SOM自组织映射网络

SOM(Self-organizing feature Map)是一种无监督学习神经网络,用于特征检测和数据降维。其主要特点是通过竞争学习进行训练,形成低维空间并可视化数据。与其他ANN不同,SOM没有隐含层,学习过程不涉及反向传播,而是采用 Winner-Take-All 策略,使得神经元根据输入数据的相似性竞争。在训练过程中,获胜神经元的权重被调整,从而学习数据的非线性关系。SOM常用于聚类和数据可视化任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. SOM简介

自组织神经网络SOM(Self-organizing feature Map),它模拟人脑中处于不同区域的神经细胞分工不同的特点,即不同区域具有不同的响应特征,而且这一过程是自动完成的。

1.1 SOM特征

  • 一种用于特征检测的 无 监 督 学 习 \color{red}{无监督学习} 神经网络。
  • SOM用于生成训练样本的低维空间,可以将高维数据间复杂的非线性统计关系转化为简单的几何关系,且以低维的方式展现,因此通常再降维问题中会使用它。
  • SOM还可以用于数据可视化,以及聚类等应用中。

1.2 与其他ANN的区别

  • 学习模式上:SOM使用的是竞争性学习而不是错误相关的学习,而其他人工神经网络涉及到反向传播和梯度下降。在竞争性学习中,各个节点会相互竞争响应输入数据子集的权利,训练数据通常没有标签,映射会学习根据相似度来区分各个特征。
  • 网络结构上:SOM一般由输入层和竞争层构成的两层网络;两层之间各神经元实现双向连接,而且网络没有隐含层。有时竞争层各神经元之间还存在横向连接。

1.3 竞争学习

竞争学习是指网络单元群体中所有单元相互竞争对外界刺激模式响应的权利。
在这里插入图片描述

  • 竞争学习规则[Winner-Take-All]
    竞争取胜的单元的连接权向着对这一刺激模式竞争更有利的方向变化。相对来说,竞争取胜的单元抑制了竞争失败单元对刺激模式的响应。这种自适应学习,使网络单元具有选择接受外界刺激模式的特性。竞争学习的更一般形式使不仅允许单个胜者出现,而且允许多个胜者出现,学习发生在胜者集合中各单元的连接权上。【Winner Take All】
  • 寻找取胜神经元
    首先,对网络当前输入模式向量X和竞争层中各神经元对应的权重向量wj(对应 j 神经元)全部进行归一化,使得 x 和 wj模为1;当网络得到一个输入模式向量x时,竞争层的所有神经元对应的权重向量均与其进行相似性比较,并将最相似的权重向量判为竞争获胜神经元。

1.4 竞争学习步骤

  • 向量归一化
  • 寻找获胜神经元
  • 网络输出与权值调整
    步骤3完成后回到步骤1继续训练,直到学习率衰减到0。学习率处于(0,1],一般随着学习的进度而减小,即调整的程度越来越小,神经元(权重)趋于聚类中兴。

2. SOM的工作原理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值