第1章·神经网络
文章平均质量分 94
本章主要学习传统的神经网络的使用方法,并通过MATLAB编程实现。包括bp,grnn,rbf,pnn,cmac等常用网络,并学习如何通过优化类算法优化神经网络参数,获得最优的神经网络训练和预测效果。
余额抵扣
助学金抵扣
还需支付
¥69.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
fpga和matlab
专业即算法,算法即数学,数学即万物。2007年开始从事MATLAB算法仿真工作,2010年开始从事FPGA系统/算法开发工作。擅长解决各种算法仿真、建模、通信、图像处理、AI、智能控制等各专业问题。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【第1章>第27节】 神经网络学习总结
本文系统介绍了多种神经网络及其MATLAB实现方法,包括BP、GRNN、RBF、PNN等传统网络,以及结合PSO、WOA、GWO等优化算法的智能网络。内容涵盖网络原理、结构设计、参数设置和实际应用,如时间序列预测、图像分类等。通过理论讲解与MATLAB仿真相结合的方式,帮助读者掌握神经网络的实现技巧和应用场景,为人工智能和数据分析领域的研究提供实用指导。原创 2025-08-06 23:01:34 · 166 阅读 · 0 评论 -
【第1章>第26节】 神经网络应用四——基于GRNN广义回归神经网络和HOG特征提取的图像分类算法Matlab仿真
本文介绍了基于GRNN广义回归神经网络和HOG特征提取的图像分类算法实现。首先详细讲解了HOG特征提取原理,包括梯度计算、细胞单元直方图构建、块归一化和特征拼接四个步骤。然后使用MATLAB 2024b实现算法,通过对200张男女脸部图像样本进行HOG特征提取和GRNN训练,最终测试分类准确率达到86%。文章提供了完整的MATLAB代码实现流程,包括特征提取、模型训练和测试评估等步骤,并附有配套视频教程链接。该算法结合HOG的鲁棒特征提取能力和GRNN的快速训练优势,可用于人脸分类等图像识别任务。原创 2025-08-06 22:58:10 · 504 阅读 · 3 评论 -
【第1章>第25节】 神经网络应用三——基于GRNN广义回归神经网络的数据分类算法Matlab仿真
本课程介绍了基于GRNN神经网络的数据分类算法实现。GRNN通过学习训练样本分布特征进行类别预测,包含输入层、模式层、求和层和输出层四层结构。课程详细演示了使用MATLAB2024b实现二维数据分类的全过程:包括数据生成与可视化、数据集划分、spread参数优化、模型评估及决策边界分析。通过对比不同spread值对分类准确率和决策边界的影响,选择最优参数并获得84.17%的测试集准确率。课程还提供了混淆矩阵分析和分类结果可视化,配套视频教程可供参考学习。该案例适用于FPGA/MATLAB/Simulink联原创 2025-08-02 21:11:58 · 3984 阅读 · 0 评论 -
【第1章>第24节】 神经网络应用二——基于RBF神经网络的多输入单输出时间序列预测Matlab仿真
摘要:本文介绍了基于RBF神经网络的多输入单输出时间序列预测方法。通过MATLAB实现,将多个输入特征(如历史观测值)组合输入RBF网络,相比单输入方法显著提高了预测精度。文章详细阐述了数据预处理、网络训练和测试步骤,并提供了三种不同类型时间序列(趋势、周期性和随机变化)的预测结果对比。实验结果表明,该方法能有效处理多维输入特征,在不同时间序列模式下均获得良好预测效果,为时间序列分析提供了更精确的解决方案。原创 2025-07-21 21:24:41 · 223 阅读 · 0 评论 -
【第1章>第23节】 神经网络应用一——基于RBF神经网络的时间序列预测Matlab仿真
本文介绍了基于RBF神经网络的时间序列预测方法及MATLAB实现。主要内容包括:1) 使用MATLAB 2022a/2024b软件;2) RBF神经网络对不同类型时间序列(趋势变化、周期变化、随机变化)的预测原理;3) 通过MATLAB代码实现预测过程,包括数据准备、网络训练和预测结果可视化;4) 提供三种典型时间序列的测试结果对比。文章还附有详细的操作视频教程链接,方便读者学习参考。该方法利用RBF神经网络的局部响应特性,有效捕捉时间序列的不同变化模式。原创 2025-07-12 23:25:10 · 166 阅读 · 0 评论 -
【第1章>第22节】优化算法与神经网络结合方法总结
摘要:本文总结了PSO、WOA、GWO三种优化算法与GRNN、RBF、FNN三种神经网络的组合应用方法。通过将神经网络的待优化参数(如RBF的中心/宽度、GRNN的光滑因子、FNN的隶属度参数)映射为优化算法的优化变量,以预测误差作为适应度函数,实现网络参数的全局优化。文章对比了不同组合的适用场景,如RBF适合函数逼近、GRNN擅长处理高噪声数据、FNN适用于模糊决策问题,并阐述了优化算法与神经网络结合的核心原理。该方法具有通用性,可拓展到任意优化算法与神经网络的组合研究。原创 2025-07-11 22:18:06 · 479 阅读 · 0 评论 -
【第1章>第21节】基于GWO灰狼优化的FNN模糊神经网络的理论学习与MATLAB仿真
摘要:本文介绍了基于灰狼优化算法(GWO)的模糊神经网络(FNN)优化方法及其MATLAB实现。首先阐述了FNN结合模糊逻辑和神经网络的优势以及参数优化需求。随后详细解析GWO算法的三个关键步骤:包围猎物、追捕猎物和攻击猎物。文章提供了完整的MATLAB实现代码,包括数据生成、GWO优化过程、适应度函数设计以及FNN网络构建。实验结果表明,GWO优化的FNN网络均方误差(0.019544)优于普通FNN,验证了该方法的有效性。该研究为神经网络参数优化提供了新的技术路径,适用于MATLAB 2022a/202原创 2025-06-26 20:03:37 · 150 阅读 · 0 评论 -
【第1章>第20节】基于GWO灰狼优化的RBF径向基函数神经网络的理论学习与MATLAB仿真
摘要:本文介绍了基于GWO(灰狼优化)算法优化RBF(径向基函数)神经网络的MATLAB实现方法。首先概述了RBF神经网络的结构特点和GWO算法的原理,包括其包围猎物、追捕猎物和攻击猎物的三个关键步骤。然后详细阐述了如何将RBF网络的参数(如均方误差目标、径向基函数扩展速度等)编码为GWO的优化变量,并使用均方误差作为适应度函数。最后给出了具体的MATLAB编程实现步骤,包括数据准备、GWO参数初始化、优化过程和RBF网络训练等,并通过仿真验证了GWO-RBF网络相比传统RBF网络具有更好的训练效果。原创 2025-06-26 19:53:06 · 121 阅读 · 0 评论 -
【第1章>第19节】基于GWO灰狼优化的GRNN广义回归神经网络的理论学习与MATLAB仿真
GWO 灰狼优化算法与 GRNN 广义回归神经网络的结合,本质上是将元启发式优化方法与非参数回归模型的优势互补。GWO 通过模拟狼群捕猎行为高效搜索 GRNN 的关键参数,而 GRNN 则利用核回归理论实现非线性映射的精确估计。这种结合不仅解决了 GRNN 参数敏感性问题,还拓展了其在复杂工程问题中的应用边界。原创 2025-06-12 16:40:39 · 122 阅读 · 0 评论 -
【第1章>第18节】基于WOA鲸鱼优化的FNN模糊神经网络的理论学习与MATLAB仿真
基于的FNN模糊神经网络的理论学习与MATLAB仿真。模糊神经网络 (FNN) 是模糊系统与神经网络相结合的产物,它融合了模糊逻辑的知识表达能力和神经网络的自学习能力。FNN 能够处理不精确、不确定的信息,同时具有很强的非线性映射能力。原创 2025-06-09 18:42:49 · 430 阅读 · 0 评论 -
【第1章>第17节】基于WOA鲸鱼优化的RBF径向基函数神经网络的理论学习与MATLAB仿真
摘要:本文介绍了基于鲸鱼优化算法(WOA)优化的RBF径向基神经网络及其MATLAB实现。首先概述了RBF神经网络的结构和WOA算法的原理,然后详细说明了WOA优化RBF参数的四个关键步骤:编码设计、适应度函数定义、WOA迭代优化和解码应用。文章提供了完整的MATLAB代码实现过程,包括数据生成、WOA参数优化和RBF网络训练,并通过仿真实验验证了WOA-RBF方法的有效性。实验结果表明,相比传统RBF网络,WOA优化能显著提高网络性能,获得更低的预测误差。该研究为智能优化算法与神经网络的结合应用提供了实践原创 2025-06-03 20:11:11 · 267 阅读 · 0 评论 -
【第1章>第16节】基于WOA鲸鱼优化的GRNN广义回归神经网络的理论学习与MATLAB仿真
鲸鱼优化算法(Whale Optimization Algorithm, WOA)由 Mirjalili 等人于 2016 年提出,模拟座头鲸的泡泡网捕食行为,具有参数少、收敛速度快、全局搜索能力强等优点。原创 2025-06-02 16:11:04 · 238 阅读 · 0 评论 -
【第1章>第15节】基于PSO粒子群优化的FNN模糊神经网络的理论学习与MATLAB仿真
本文介绍了使用PSO算法优化FNN模糊神经网络的MATLAB实现方法。FNN结合了模糊逻辑和神经网络的优势,但参数选择影响性能。PSO算法通过模拟群体智能来优化FNN参数,包括隶属函数数量和类型。文章详细阐述了PSO原理和优化步骤,提供了MATLAB代码实现,通过实验验证了PSO-FNN相比传统FNN具有更好的训练效果。最后给出了视频教程参考,帮助读者理解实现过程。原创 2025-05-25 23:17:26 · 267 阅读 · 0 评论 -
【第1章>第14节】基于PSO粒子群优化的RBF径向基函数神经网络的理论学习与MATLAB仿真
摘要:本文介绍了使用PSO算法优化RBF神经网络的方法及MATLAB实现。通过模拟鸟群觅食行为,PSO算法优化RBF的关键参数(均方误差、扩展速度、神经元数等),建立更优的预测模型。MATLAB程序展示了1000个样本的训练过程,对比了优化前后的误差曲线,验证了PSO-RBF相比传统RBF具有更好的训练效果。文章包含理论推导、代码实现和视频教程参考,适用于MATLAB2022a/2024b版本,为人工智能基础应用提供实践指导。原创 2025-05-25 22:59:19 · 153 阅读 · 0 评论 -
【第1章>第13节】基于PSO粒子群优化的GRNN广义回归神经网络的理论学习与MATLAB仿真
本文介绍了基于PSO算法优化GRNN神经网络的方法及MATLAB实现。主要内容包括:1)理论部分阐述了GRNN基于核回归的原理及平滑因子σ的选择关键,以及PSO算法模拟鸟群觅食的优化机制;2)实现步骤详细说明了以MSE为适应度函数优化σ参数,并重构GRNN模型的过程;3)MATLAB编程部分展示了数据生成、PSO参数初始化、迭代优化及GRNN训练预测的完整流程。实验结果表明,PSO优化后的GRNN(σ=0.0473)相比传统方法具有更优的预测性能,均方误差显著降低。配套视频教程提供了操作演示,适合FPGA/原创 2025-05-23 22:03:29 · 519 阅读 · 0 评论 -
【第1章>第12节】RBM受限玻尔兹曼机的理论学习与MATLAB仿真
本文介绍了受限玻尔兹曼机(RBM)的原理及其在MATLAB中的实现。RBM是一种生成式随机神经网络,由可见层和隐藏层组成,常用于特征提取和深度神经网络的预训练。文章详细阐述了RBM的条件概率、学习算法(如对比散度CD-k算法)和网络结构,并提供了MATLAB编程实现的完整代码,包括数据读取、参数初始化、训练过程和系统测试。此外,文章还探讨了训练次数、隐含层数量和CD-k算法步数对系统预测性能的影响,并提供了视频教程以供参考。原创 2025-05-10 04:03:27 · 128 阅读 · 0 评论 -
【第1章>第11节】小波神经网络的理论学习与MATLAB仿真
小波神经网络(Wavelet Neural Network,WNN)是一种将小波分析理论与人工神经网络相结合的新型神经网络模型。原创 2025-05-07 16:05:35 · 308 阅读 · 0 评论 -
【第1章>第10节】SVM支持向量机的理论学习与MATLAB仿真
支持向量机(Support Vector Machine,SVM)是一种有监督的机器学习算法,最初用于解决二分类问题,后来也被扩展到多分类和回归问题。其核心思想是在特征空间中找到一个最优的超平面,使得不同类别的数据点能够被最大程度地分开,同时保证分类的泛化能力。在回归问题中,SVM 通过寻找一个能以最小误差拟合训练数据的函数。支持向量机的基本思想是:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。原创 2025-04-18 08:09:00 · 403 阅读 · 0 评论 -
【第1章>第9节】Elman神经网络的理论学习与MATLAB仿真
Elman神经网络是一种典型的递归神经网络(RNN),由 Jeffrey L. Elman在1990年提出。与前馈神经网络不同,Elman网络具有反馈连接,能够处理序列数据,捕捉数据中的动态信息和时间依赖关系。它在语音识别、时间序列预测、机器人控制等领域有广泛应用。原创 2025-04-18 07:34:55 · 197 阅读 · 0 评论 -
【第1章>第8节】FNN模糊神经网络的理论学习与MATLAB仿真
模糊神经网络(FNN,Fuzzy Neural Network)是将模糊逻辑与神经网络相结合的一种智能算法,它融合了模糊逻辑善于处理不确定性和神经网络的自学习、自适应能力。原创 2025-04-04 12:37:42 · 337 阅读 · 0 评论 -
【第1章>第7节】LVQ学习矢量量化神经网络的理论学习与MATLAB仿真
学习矢量量化(Learning Vector Quantization,LVQ)神经网络是一种有监督的聚类算法,它结合了无监督学习和有监督学习的优点,能够对数据进行有效的分类和聚类。LVQ的基本思想是通过训练一组原型矢量(也称为码本矢量)来表示输入数据的类别。这些原型矢量在输入空间中形成聚类中心,每个原型矢量代表一个特定的类别或子类别。在训练过程中,LVQ算法根据输入数据的类别标签,调整原型矢量的位置,使得同一类别的原型矢量尽可能靠近该类别的数据点,而不同类别的原型矢量之间保持一定的距离。原创 2025-04-04 12:09:08 · 173 阅读 · 0 评论 -
【第1章>第6节】CMAC小脑模型神经网络的理论学习与MATLAB仿真
小脑模型关节控制器(Cerebellar Model Articulation Controller,CMAC)是由美国J. S. Albus 博士于1975年提出的一种基于局部逼近的神经网络。它是受到生物小脑神经结构和功能的启发而设计的,具有学习速度快、实时性好等优点,在机器人控制、函数逼近、模式识别等领域有广泛应用。CMAC网络的基本思想是将输入空间进行划分,每个输入对应一组地址,这些地址对应着存储单元,存储单元中存储着相应的权值。原创 2025-03-20 20:42:05 · 435 阅读 · 0 评论 -
【第1章>第5节】SOM自组织映射网络的理论学习与MATLAB仿真
自组织映射网络(Self-Organizing Map,SOM)是一种无监督学习的人工神经网络,由芬兰学者Teuvo Kohonen于1981年提出,也被称为Kohonen网络。它的主要功能是将高维输入数据映射到低维(通常是二维)的离散网格上,同时保持输入数据的拓扑结构,即相邻的输入数据在映射后的网格上也相邻。原创 2025-03-20 20:20:57 · 322 阅读 · 0 评论 -
【第1章>第4节】PNN概率神经网络的理论学习与MATLAB仿真
概率神经网络(Probabilistic Neural Network, PNN)由 D.F. Specht 于1990年提出,是一种基于贝叶斯分类规则和Parzen窗密度估计的神经网络。PNN通过核函数估计样本概率密度,结合贝叶斯决策理论实现分类任务,具有训练速度快、分类精度高和抗噪声能力强等优点。PNN的结构如下图所示:原创 2025-03-16 19:42:42 · 487 阅读 · 0 评论 -
【第1章>第3节】RBF径向基函数神经网络的理论学习与MATLAB仿真
径向基函数(Radial Basis Function, RBF)神经网络是一种前馈型神经网络,具有很强的非线性映射能力。它由输入层、隐藏层和输出层组成。输入层仅起到传输输入信号的作用,隐藏层神经元采用径向基函数作为激活函数,输出层则是对隐藏层输出的线性组合。原创 2025-03-07 09:09:04 · 526 阅读 · 0 评论 -
【第1章>第2节】GRNN广义回归神经网络的理论学习与MATLAB仿真
广义回归神经网络(Generalized Regression Neural Network,GRNN)是由 Specht 博士在 1991 年提出的一种径向基神经网络。它是一种基于非线性回归理论的前馈型神经网络,具有很强的非线性映射能力和良好的容错性、自适应性,在函数逼近、时间序列预测、模式识别等领域有着广泛的应用。GRNN是建立在非参数核回归基础之上的,该神经网络是以测试样本为后验条件,并从观测样本中计算得到自变量和因变量之间的概率密度函数,然后在计算出因变量关于自变量的回归值。原创 2025-03-02 02:22:37 · 147 阅读 · 0 评论 -
【第1章>第1节】BP神经网络的理论学习与MATLAB仿真
BP(Back Propagation)神经网络是一种按误差反向传播算法训练的多层前馈网络,它是目前应用最广泛的神经网络模型之一。其基本思想是信号前向传播,误差反向传播,通过不断调整网络的权值和阈值,使得网络的输出误差最小。BP神经网络的基本结构如下图所示:从图的结构可知,BP神经网络主要由三个层次组成,包括BP神经网络的输入层,BP神经网络的隐含层以及BP神经网络的输出层。来自外部的各种信息通过BP神经网络的输入层传输进入到其隐含层进行网络运算处理,并通过输出层输出得到最终的处理结果。原创 2025-02-28 05:08:59 · 573 阅读 · 0 评论
分享