朴素贝叶斯分类器

《机器学习实战》朴素贝叶斯分类器

贝叶斯准则:

p(c|x)=p(x|c)p(c)p(x)(1)

上式中, c 表示某个具体的类别,x表示某个样本的特征向量。

  • 问题:对于一个分类问题,给定样本的特征向量 x={w1,w2,...,wn} ,预测此样本属于类 c 的概率? 如果p(c1|x)>p(c2|x),则此样本应该归为类 c1 ,反之归为类 c2

在公式(1)中,给定一个具体的样本, p(x) 是固定的值,与类别无关。 p(c) 可以很容易得到,关键是条件概率 p(x|c) 的求解?

如何求解条件概率 p(x|c) ?

在朴素贝叶斯中做了如下假设:

p(x|c)=p(w1|c)p(w2|c)...p(wn|c)

上述假设即为 条件独立假设,这个假设正是朴素贝叶斯分类器中 朴素(naive)一词的含义。也可 属性条件独立假设:对已知类别,假设所有属性相互独立。换言之,假设每个属性独立地对分类结果发生影响。

垃圾邮件过滤

from numpy import *
from email import feedparser

def loadDataSet():
    """
    @function: 加载训练集
    """
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not
    return postingList,classVec

def createVocabList(dataSet):
    """
    @function: 创建词表
    """
    vocabSet = set([])  #create empty set
    for document in dataSet:
        # 求并集
        vocabSet = vocabSet | set(document) #union of the two sets
    return list(vocabSet)

def setOfWords2Vec(vocabList, inputSet):
    """
    @function: 输出文档向量,词集模型(sef-of-words model)
    """
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else: print "the word: %s is not in my Vocabulary!" % word
    return returnVec

def trainNB0(trainMatrix,trainCategory):
    """
    @function: 朴素贝叶斯分类器训练函数
    :params:trainMatrix: 文档矩阵
    :params:trainCategory: 文档分类
    """
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs) #表示为侮辱性文字的概率
    p0Num = ones(numWords); p1Num = ones(numWords)      #change to ones() 
    p0Denom = 2.0; p1Denom = 2.0                        #change to 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = log(p1Num/p1Denom) #change to log(),表示为侮辱性文字的情况下,每个词出现的概率
    p0Vect = log(p0Num/p0Denom) #change to log()
    return p0Vect,p1Vect,pAbusive

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    """
    @function: 做出最后属于哪一类的判断
    :params:vec2Classify: 需要分类的文档向量
    :params:p0Vec: 在类 0 中,每个词的条件概率 p(wi|c0)
    :params:p1Vec: 在类 1 中,每个词的条件概率 p(wi|c1)
    :params:pClass1: 类 1 出现的概率
    """
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)    #element-wise mult
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else: 
        return 0

def bagOfWords2VecMN(vocabList, inputSet):
    """
    @function: 文档词袋模型
    """
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec

def testingNB():
    """
    @function: 测试朴素贝叶斯算法
    """
    listOPosts,listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
    testEntry = ['stupid', 'garbage']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)

def textParse(bigString):    #input is big string, #output is word list
    """
    @function: 文本预处理函数
    """
    import re
    listOfTokens = re.split(r'\W*', bigString) #去除非单词字符
    return [tok.lower() for tok in listOfTokens if len(tok) > 2] 

def spamTest():
    docList=[]; classList = []; fullText =[]
    for i in range(1,26):
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList) #create vocabulary
    trainingSet = range(50); testSet=[] #create test set
    for i in range(10):
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])  
    trainMat=[]; trainClasses = []
    for docIndex in trainingSet: #train the classifier (get probs) trainNB0
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
    errorCount = 0
    for docIndex in testSet: #classify the remaining items
        #wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
        wordVector = setOfWords2Vec(vocabList, docList[docIndex])
        #if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
        if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
            errorCount += 1
            print "classification error",docList[docIndex]
    print 'the error rate is: ',float(errorCount)/len(testSet)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值