什么是脉冲压缩
一、信号带宽的意义
信号的带宽决定了其自身的测距精度和距离分辨力。
其中距离分辨力:
ΔR = cTp/2 = c/2B,其中B = 1/Tp;
其中c为传播速度,Tp为脉宽(信号持续时间),B为带宽(信号的频谱宽度)
由公式可以看到,当通过增加脉宽来提高信号的总能量时,其作用距离会增大,并且距离的分辨力的数值会提高(分辨力降低)。如果依照没有调制过信号调制方式带宽和脉宽总会受到限制,以至于信号的作用距离和分辨力不能同时取最好情况下的值。
我们可以发现,问题的关键在于没有调制过信号B与t存在一个互相制约的关系式,有没有信号能够突破时间和带宽的限制呢?
二、线性调频信号
LFM信号的可表示为:
s(t) = G(t/Tp)exp(j2π(fct+Kt^2/2)) , f(t) = fc + Kt;
其中G(t/Tp)表示时宽为Tp的矩形窗,K = B/Tp为线性调频的斜率,其瞬时频率随时间线性变化,所以理论上脉宽带宽乘积能够突破原有的限制,表示为
Tp * B >>1
三、匹配滤波器
由于信号在传播的过程中,会受到噪声干扰,还有自身的能量也会衰减,我们可以通过增加脉宽的方式来使信号的总能量增加,使信号探测的距离更远。在白噪声条件下,宽带信号带内噪声也会成正比的增加,以此可以推测到信号回波的信噪比依然不尽人意。
匹配滤波器是以输出信噪比最大为准则而构造的滤波器,时域上表示为
h(t) = s*(t0-t)
其含义为选取原信号上的某一时刻,以时刻为原点时域上将信号序列翻转,为了计算方便以及滤波器因果可实现,通常将t0设置为0。
四、匹配滤波器+LFM信号
滤波器作为一个系统,在时域时,要得到输出信号,就需要把输入信号和滤波器序列进行卷积操作
原信号表达式为s(t) = G(t/Tp)exp(j2π(fct+Kt^2/2)) , f(t) = fc + Kt;
包含一个矩形窗和一个复函数,而匹配滤波器就是原信号序列以y轴为对称轴的反转,
其最终输出结果抽象表示为:(矩形窗x复函数)*(矩形窗x对称复函数)
输出信号图像为(纵坐标为dB)
由于其主瓣在图像上较为明显,此时我们以主瓣宽度作为输出信号的时域宽度(新的脉宽),
Tp_New = t0 = 1/KTp = 1/B
Tp/Tp_New = TpB
所以当TpB>>1时,可将回波信号的时域宽度显著压缩。
五、计算方式
法一:IFFT[FFT(原信号)×FFT*(原信号)] 注意:*为序列的共轭,最终得到是时域波形
法二:原信号×原信号翻转共轭
六、为什么能够目标探测
本方法只适用于LFM信号的目标探测,计算结果为回波信号和其翻转共轭的卷积,峰值所在时间点乘以传播速度即为目标距离。如若出现不同的峰值则代表不同的目标