有关YOLO目标检测的FPGA加速教程(一)

本文介绍了如何在FPGA平台上使用PYNQ进行YOLO目标检测的加速。首先讲解了开发板内存卡的装配和设置以连接到Pynq,然后详细阐述了如何配置网络使得开发板与笔记本电脑共享网络。接着,通过pip安装所需库,并参照大神项目部署Tiny YOLO。在遇到Python版本问题时,切换到Python3并解决了问题。最终成功运行Tiny YOLO并展示结果。
摘要由CSDN通过智能技术生成

1.内存卡的装配

详见:https://blog.csdn.net/weixin_38438451/article/details/83474479

在这一步,开发板启动后,可以通过超级终端HyperTerminal软件连接到Pynq,通过com端口查看ip进行以太网连接。

2.pynq上网

一、笔记本电脑需要先连上外网,可以连上家里的WIFI,或者手机开热点(本人未测试过连接手机的热点,但是理论上应该可行)。

二、打开网络共享中心->更改适配器设置->无线网络连接->属性->共享->允许其他网络用户通过此计算机连接->选择本地连接->确定

三、完成第二部后会分配一个ip给本地连接,例如我的无线网络连接的ip是192.168.7.34,分配给本地连接的ip是192.168.137.1,我们需要的就是这个本地连接的ip,这个ip也是开发板的网关ip。电脑本地连接ip == 开发板的网关ip!

四、开发板通过网线连接笔记本电脑,修改开发板的ip地址,需要对应好自己的网关地址配置ip,例如网关ip是192.168.137.1,配置ip的命令:ifconfig eth0 192.168.137.XXX,XXX随便写个数字(除了1)

五、网关配置为笔记本电脑上的本地连接的ip地址,例如:route a

YOLO (You Only Look Once) 是一种常用于目标检测的神经网络模型。它在计算机视觉中具有广泛的应用,例如实时视频分析、自动驾驶、智能监控等。然而,YOLO的计算复杂度较高,对于一般的CPU而言往往无法满足实时处理的需求。 FPGA (Field-Programmable Gate Array) 是一种可编程逻辑器件,具有并行计算能力和高灵活性。通过使用FPGA,可以有效地加速YOLO的执行速度。在FPGA上实现的YOLO可以通过并行计算的方式同时处理多个输入,并且可以根据实际需求进行灵活修改,以优化计算和存储资源。 FPGA加速YOLO的过程一般可以分为三个主要步骤:数据传输、计算加速和结果输出。首先,需要将输入数据从主机内存传输到FPGA芯片。接下来,在FPGA上运行优化的YOLO算法,通过并行计算处理图像数据,快速检测出目标并提取特征。最后,将处理后的结果传回主机内存,供后续处理或输出使用。 相比于传统的计算平台,使用FPGA加速YOLO具有多个优势。首先,FPGA的并行计算能力使得处理速度更快,可以满足实时性的需求。其次,FPGA具有低功耗的特性,可以在保持高性能的同时节约能源。此外,FPGA还支持可编程性,可以根据不同的应用场景进行灵活的定制。 总而言之,使用FPGA加速YOLO是一种有效的方法,可以提高目标检测的实时性和性能。随着FPGA技术的不断发展,相信它在计算机视觉领域的应用将会越来越广泛。
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值