一道很有意思的概率题

雨中漫步

概率论

在平面上取一格点 P P P,求取到的 P P P点满足:连接原点 O O O P P P的线段 O P OP OP上没有其他格点的概率

解:

答案: 6 π 2 \frac{6}{\pi ^2} π26

分析:首先我们要明确什么情况下 O P OP OP线段没有格点比如处于 ( 3 , 1 ) (3,1) (3,1)的点 P P P没有格点,而处直线 O P OP OP上的 Q Q Q点要不满足 O Q OQ OQ上没有格点的情况,那么 Q Q Q表示为 ( 3 n , n ) (3n,n) (3n,n),即:

满足条件的 P ( m , n ) P(m,n) P(m,n)必然满足 m , n m,n m,n互质。下面通过两种方法求出概率值:

法一:

我们设 a , b a,b a,b最大公约数为 k k k的概率为 P ( k ) P(k) P(k),对整数 k k k来说, a a a k k k的倍数的概率为 1 k \frac{1}{k} k1 b b b k k k的倍数的概率也为 1 k \frac{1}{k} k1,设两整数互质的概率为 P 0 P_{0} P0
易知:
P ( k ) = 1 k 1 k P 0 P(k)=\frac{1}{k} \frac{1}{k} P_{0} P(k)=k1k1P0
所有的数都有最大公约数,所以: ∑ k = 1 ∞ 1 k 2 P 0 = 1 \sum_{k=1}^{\infty}{\frac{1}{k^2}P_0}=1 k=1k21P0=1
所以:
P 0 = 1 ∑ k = 1 ∞ 1 k 2 = 6 π 2 P_0=\frac{1}{\sum\limits_{k=1}^{\infty}{\frac{1}{k^2}}}=\frac{6}{\pi ^2} P0=k=1k211=π26

法二:

考虑第一象限,将质数从小到大排列为 k 1 , k 2 , k 3 . . . k n . . . k_{1},k_{2},k_{3}...k_{n}... k1,k2,k3...kn...那么
m , n m,n m,n被质数 k i k_{i} ki整除的概为: 1 k i \frac{1}{k_{i}} ki1。因此 m , n m,n m,n互质(即没有任何质数为公因数)的概率为 1 − 1 k i 2 1-\frac{1}{{k_i}^2} 1ki21
∏ i = 1 ∞ ( 1 − 1 k i 2 ) = 1 ∏ i = 1 ∞ ( 1 + 1 p i 2 + 1 p i 4 + 1 p i 6 . . . ) = 1 ( 1 + 1 2 2 + 1 2 4 . . . ) ( 1 + 1 3 2 + 1 3 4 . . . ) ( 1 + 1 5 2 + 1 5 4 . . . ) . . . = 1 1 + 1 2 2 + 1 3 2 + 1 2 4 + 1 5 2 + 1 2 2 ⋅ 3 2 + . . . = 1 ∑ n = 1 ∞ 1 n 2 = 6 π 2 \prod_{i=1}^{\infty}{\left( 1-\frac{1}{k_{i}^{2}} \right)}\\ =\frac{1}{\prod\limits_{i=1}^{\infty}{\left( 1+\frac{1}{p_{i}^{2}}+\frac{1}{p_{i}^{4}}+\frac{1}{p_{i}^{6}}... \right)}} \\ =\frac{1}{\left( 1+\frac{1}{2^2}+\frac{1}{2^4}... \right) \left( 1+\frac{1}{3^2}+\frac{1}{3^4}... \right) \left( 1+\frac{1}{5^2}+\frac{1}{5^4}... \right) ...} \\ =\frac{1}{1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{2^4}+\frac{1}{5^2}+\frac{1}{2^2\cdot 3^2}+...}\\ =\frac{1}{\sum\limits_{n=1}^{\infty}{\frac{1}{n^2}}}\\ =\frac{6}{\pi ^2} i=1(1ki21)=i=1(1+pi21+pi41+pi61...)1=(1+221+241...)(1+321+341...)(1+521+541...)...1=1+221+321+241+521+22321+...1=n=1n211=π26
完毕
至于 ∑ k = 1 ∞ 1 k 2 = π 2 6 \sum\limits_{k=1}^{\infty}{\frac{1}{k^2}}=\frac{\pi ^2}{6} k=1k21=6π2
为什么有这个恒等式,可以将 y = ∣ x ∣ y=|x| y=x傅里叶展开或者 y = x 2 y=x^2 y=x2傅氏展开,或者利用weierstrass分解甚至二重积分等等都可以证明。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值