反导系统优化部署

反导系统优化部署

弹道导弹突击已成为现代战争中实施远程精确打击的重要手段,具有速度快、威力大、打击精度高、突防能力强等特点。防御方如何根据反导武器系统拦截能力和导弹进攻航路对拦截武器进行优化部署,是当前构建反导拦截体系、提升体系作战效能急需解决的关键问题。基于预先堪选的阵地位置(具体坐标见附件3,坐标系选取同保卫目标),对2套I型反导武器系统的部署进行优化调整,在尽可能提升整体拦截能力的同时,使得保卫各个目标的能力相对均衡。出于电磁兼容的考虑,相邻2套反导武器系统间距需大于5km。请给出这2套I型反导武器系统优化调整部署后的位置坐标和雷达法线方向,以及相应的拦截能力,并将结果填入附件4,并同时在正文中给出,为提升反导体系的整体拦截能力,综合考虑高低两层武器系统的有机衔接,基于问题2中的I型反导武器系统部署,在预先堪选的阵地上补充部署4套II型。

建立模型

在这里插入图片描述
min ⁡ ϑ ˉ , η \min \bar{\vartheta} , \eta minϑˉ,η
min ⁡ η \min \eta minη
s . t . { 探测弧段: { 径约束 { R = K σ 4 , x 2 + y 2 + z 2 ⩽ R 2 , 角约束 { φ − α ⩽ Φ P ⩽ φ + α , β 1 ⩽ Ψ P ⩽ β 2 , 杀伤阶段: { 径约束 : D n e a r ⩽ x 2 + y 2 + z 2 ⩽ D f a r , 高约束 : H min ⁡ ⩽ y ⩽ H max ⁡ , 角约束: { arctan ⁡ ∣ x z ∣ ⩽ γ , 0 ⩽ y x ⩽ tan ⁡ θ , 发射阶段: { 初时刻约束: { τ s t a r t ⩾ t 1 − ρ min ⁡ v , τ s t a r t ⩾ t 0 + τ , 末时刻约束: τ e n d ⩾ t 2 − ρ max ⁡ v , s.t.\begin{cases} \text{探测弧段:}\begin{cases} \text{径约束}\begin{cases} R=K\sqrt[4]{\sigma},\\ x^2+y^2+z^2\leqslant R^2,\\ \end{cases}\\ \text{角约束}\begin{cases} \varphi -\alpha \leqslant \varPhi _P\leqslant \varphi +\alpha ,\\ \beta _1\leqslant \varPsi _P\leqslant \beta _2,\\ \end{cases}\\ \end{cases}\\ \text{杀伤阶段:}\begin{cases} \text{径约束}:D_{near}\leqslant \sqrt{x^2+y^2+z^2}\leqslant D_{far},\\ \text{高约束}:H_{\min}\leqslant y\leqslant H_{\max},\\ \text{角约束:}\begin{cases} \arctan |\frac{x}{z}|\leqslant \gamma ,\\ 0\leqslant \frac{y}{x}\leqslant \tan \theta ,\\ \end{cases}\\ \end{cases}\\ \text{发射阶段:}\begin{cases} \text{初时刻约束:}\begin{cases} \tau _{start}\geqslant t_1-\frac{\rho _{\min}}{v},\\ \tau _{start}\geqslant t_0+\tau ,\\ \end{cases}\\ \text{末时刻约束:}\tau _{end}\geqslant t_2-\frac{\rho _{\max}}{v},\\ \end{cases}\\ \end{cases} s.t.探测弧段:径约束{R=K4σ ,x2+y2+z2R2,角约束{φαΦPφ+α,β1ΨPβ2,杀伤阶段:径约束:Dnearx2+y2+z2 Dfar,高约束:HminyHmax,角约束:{arctanzxγ,0xytanθ,发射阶段:初时刻约束:{τstartt1vρmin,τstartt0+τ,末时刻约束:τendt2vρmax,
最终得到协同拦截效果优化模型:
min ⁡ ∑ j = 1 2 ∑ k = 1 6 P k j ⋅ ζ k j I + ( 1 − P k j ) ζ k j I I \min \sum_{j=1}^2{\sum_{k=1}^6{P_{kj}\cdot \zeta _{kj}^{I}+\left( 1-P_{kj} \right) \zeta _{kj}^{II}}} minj=12k=16PkjζkjI+(1Pkj)ζkjII

s . t . { 探测弧段: { 径约束 { R = K σ 4 , x 2 + y 2 + z 2 ⩽ R 2 , 角约束 { φ − α ⩽ Φ P ⩽ φ + α , β 1 ⩽ Ψ P ⩽ β 2 , 杀伤阶段: { 径约束 : D n e a r ⩽ x 2 + y 2 + z 2 ⩽ D f a r , 高约束 : H min ⁡ ⩽ y ⩽ H max ⁡ , 角约束: { arctan ⁡ ∣ x z ∣ ⩽ γ , 0 ⩽ y x ⩽ tan ⁡ θ , 发射阶段: { 初时刻约束: { τ s t a r t ∣ τ s t a r t ⩾ τ 0 } ⋃ { τ s t a r t ∣ τ s t a r t ⩾ t 1 − ρ min ⁡ v , τ s t a r t ⩾ t 0 + τ , } 末时刻约束: τ e n d ⩾ t 2 − ρ max ⁡ v , s.t.\begin{cases} \text{探测弧段:}\begin{cases} \text{径约束}\begin{cases} R=K\sqrt[4]{\sigma},\\ x^2+y^2+z^2\leqslant R^2,\\ \end{cases}\\ \text{角约束}\begin{cases} \varphi -\alpha \leqslant \varPhi _P\leqslant \varphi +\alpha ,\\ \beta _1\leqslant \varPsi _P\leqslant \beta _2,\\ \end{cases}\\ \end{cases}\\ \text{杀伤阶段:}\begin{cases} \text{径约束}:D_{near}\leqslant \sqrt{x^2+y^2+z^2}\leqslant D_{far},\\ \text{高约束}:H_{\min}\leqslant y\leqslant H_{\max},\\ \text{角约束:}\begin{cases} \arctan |\frac{x}{z}|\leqslant \gamma ,\\ 0\leqslant \frac{y}{x}\leqslant \tan \theta ,\\ \end{cases}\\ \end{cases}\\ \text{发射阶段:}\begin{cases} \text{初时刻约束:}\left\{ \tau _{start}|\tau _{start}\geqslant \tau _0 \right\} \bigcup{\left\{ \tau _{start}|\tau _{start}\geqslant t_1-\frac{\rho _{\min}}{v},\tau _{start}\geqslant t_0+\tau , \right\}}\\ \text{末时刻约束:}\tau _{end}\geqslant t_2-\frac{\rho _{\max}}{v},\\ \end{cases}\\ \end{cases} s.t.探测弧段:径约束{R=K4σ ,x2+y2+z2R2,角约束{φαΦPφ+α,β1ΨPβ2,杀伤阶段:径约束:Dnearx2+y2+z2 Dfar,高约束:HminyHmax,角约束:{arctanzxγ,0xytanθ,发射阶段:{初时刻约束:{τstartτstartτ0}{τstartτstartt1vρmin,τstartt0+τ,}末时刻约束:τendt2vρmax,
更多内容见代码下载链接:代码

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值