Bag of Tricks and A Strong Baseline for Deep Person Re-identification

本文研究了行人重识别(ReID)的高效训练技巧,组合这些技巧后,仅使用全局特征在Market1501上实现了85.9%的mAP。文中提出的方法包括Warmup Learning Rate、随机擦除数据扩展、标签平滑、Last Stride、BNNeck和Center Loss。这些技巧显著提升了ResNet50网络的性能,达到top1: 94.5%, top5: 85.9%的mAP。" 79438621,1221337,OpenGL教程:GLSL变量详解,"['图形学', 'OpenGL ES2.0', '着色器', '数据类型']
摘要由CSDN通过智能技术生成

 

摘要

本文意在研究一个简单有效的行人重识别(ReID)baseline。近些年来基于深度学习的ReID取得了不错的进展,取得高光的表现。然而许多state-of-art的方式都是通过复杂的网络结构与多分枝特征拼接实现的。文献中有些高效的训练技巧简略的出现在一些论文或者源码中。本文将手机并且评估这些行人重识别的高效训练技巧。将这些技巧组合在一起,仅仅使用全局特征就可以在Market1501上达到85.9%的mAP。源码与模型可在github上找到。

 

背景

近些年来基于深度学习的ReID取得了不错的进展,取得高光的表现。然而许多state-of-art的方式都是通过复杂的网络结构与多分枝特征拼接实现的。文献中有些高效的训练技巧简略的出现在一些论文或者源码中。本文会收集并且评估这些ReID的训练技巧。使用所有训练技巧,ResNet50网络可以在Market1501上达到top1:94.5%,top5:85.9%的mAP。值得一提的是我们是用全局特征取得这样令人吃惊的表现的。

作为对比我们对去年ECCV2018与CVPR2018上发表的论文进行了综述。如图1所示,之前大多数工作都是在比较弱的baseline上进行扩展。在Market1501上23个baseline中只有2个超过了top1:90%的准确率。有4个baseline的top1准确率低于80%。在DukeMTMC-reID上所有baseline的rank-1都没有超过80%并且mAP不超过65%。我们认为强大的baseline对于推进研究的进展十分重要,因此我们对标准的baseline使用一些训练技巧得到了强baseline。我们的强baseline的源码已经开源出来了。

此外我们还发现有些文章与state-of-arts方法的比较并不公平。特别是改进的方式并不是方法本身,而是训练的技巧。但是训练技巧在文章中却轻描淡写的带过,让读者很容易错过这些信息。这会夸张了论文中方法的重要性。我们建议reviewers在审阅这些学术论文的时候也要将训练技巧考虑进去。

出去之前提到的原因,还有一个考虑是工业界更喜欢简单有效的模型,而不是在前向阶段将许多局部特征拼接在一起的方式。为了追求高精度,学术界经常结合多种局部特征或者利用语义信息进行姿态估计或者分割模型。大特征同样极大的降低了检索的速度。因此,我们希望使用一些技巧来改进ReID模型的能力,仅仅使用全局特征来得到好的表现。本文的目标总结如下:

  1. 我们对许多发布在顶会的论文做了综述,发现他们大多数是建立在较差的baseline上的。
  2. 对于学术界我们希望提供一个强baseline给研究人员作为取得更高行人ReId准确率的基础。
  3. 对于社区来说,我们希望给reviewers一些参考,来判断哪些技巧会影响ReID模型的表现。我们建议在对比不同方式的效果的时候,reviewers也需要将这些技巧纳入考虑范围。
  4. 对于工业界来说,我们希望提供一些有效的技巧从而在不消耗太多计算量的前提下获得更好的模型。

图1:在Market1501与DukeMTMC-reID数据集上不同baseline的表现。我们将自己的baseline与CVPR2018和ECCV2018上的baseline做了对比。

幸运的是,许多有效的训练技巧都呈现在一些论文或者开源项目中了。我们收集了许多技巧,并且在ReID数据集上对他们的效果进行了评估。经过许多试验,我们选择了六个技巧在本文进行介绍。有些方法是我们设计或者进行了一定改进的。我们将这些技巧应用到广为使用的baseline得到我们改进的baseline,在Market1501数据集上达到了94.5%与85.9%的mAP。此外,我们发现不同的论文选择不同的样本大小与batchsize大小,作为补充,我们也研究了这些因素对模型效果的影响。总结来说,本文的贡献总结如下:

  1. 我们收集了一些在行人ReID领域有效的训练技巧。在这个基础上我们设计了一个新的瓶颈结构命名为BNNeck。此外,我们在两个应用广泛的数据集上评估每个技巧的改进。
  2. 我们提供了一个强ReIDbaseline,在Market1501上达到了94.5%与85.9%的准确率。值得一提的是这个结果是利用ResNet50结构通过全局特征获得的。据我们所知,这是全局特征在行人ReID领域得到的最佳的表现。
  3. 作为补充,我们评估输入样本尺寸与batchsize大小对Re
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值