做大模型产品,如何设计prompt?

本文探讨了在GenAI产品中,结构化prompt和对话式prompt的应用,强调了它们各自的优缺点及适用场景。重点介绍了结构化prompt的设计要点,如多任务处理、输出格式控制,以及prompt的管理、测试和迭代过程。提示在设计时应选择对话产品难以满足的场景以保持AI价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

做GenAI产品,除了要设计好的AI任务流程,合理的拆分业务以外,最重要的就是写好prompt,管理好prompt,持续迭代prompt。

prompt一般有两种形式:结构化prompt对话式prompt

结构化prompt的优点是通过规范的结构把任务介绍得很清楚,缺点就是往往很长,比较复杂。而对话式prompt更加简单,更符合日常的说话习惯,缺点是难以一句话描述清楚任务,最后得不到满意的结果,需要进行多轮对话才能获得最终结果。

两种prompt都有自己的适合场景,结构化的prompt更合适用来内置到产品工作流中,由开发者编写、维护,非对话类AI产品基本采用的就是这种复杂的prompt形式。对话式prompt就合适用在chatbot场景,直接由用户发出。

关于对话式prompt,关键是引导用户持续对话下去,很多时候,用户其实是不知道怎么提问的,我们可以通过搜索query推荐策略来给用户推荐话题相关的prompt,当然也可以把上下文丢给大模型并让模型针对上面的对话提出x个最相关的问题。

如果大家对推荐query感兴趣(评论留言),后面我将单独写一篇文章,本文主要关注非对话类(即“任务型”)AI产品的设计,因此下面着重介绍下结构化prompt的设计思路。

1、结构化prompt

结构化prompt一般可以包括以下几个部分:

  • 定义角色
  • 介绍背景和输入的数据格式
  • 提出任务(可能会有多个任务)
  • 执行所有任务的步骤
  • 定义输出格式
  • 给定输出例子

这是一个结构化prompt的大概框架,这个框架可以采用markdown来描述。结构化prompt有两个很关键的地方需要注意,第一个是多任务,第二个就是输出格式的控制。

  • 关于多任务:首先,一定要明白在一个prompt里面内置多个任务,绝对不是一个好的选择,除非你有强烈的这样做的理由。但是选择做多任务可以「降低成本」,我相信对大多数独立开发者来说,都是重要的事情。
  • 如果在一个prompt同时执行「总结章节」,「抽取highlight」,「抽取关键字」等任务,就是为了让这些事情只需要输入一遍transcript就可以同时获取这些结果。如果单独执行每一个任务,那就需要把相同的transcript数据输入LLM多次,这将会多消耗数倍的成本。
  • 但一定要明白,多任务无疑增加了LLM执行的复杂度,这并不符合「尽量给LLM简单、明确、较小的任务的原则」。经过测试,多任务执行的结果质量赶单任务是有差距的,这就需要不断的打磨和权衡吧。
  • 关于输出格式控制:由于LLM总结结果是需要在任务型产品页面上进行结构化展示,并不是chatbot那样直接输出给用户,所以这类产品对LLM的输出格式就需要严格定义,并且希望LLM能够稳定且正确的输出。对于程序员来说,一般会选择json作为输出。但考虑到LLM的输出可能不稳定,且偶尔输出的json可能是非法的,这种情况下只能重试LLM,导致浪费token,增加成本。因而,建议选择LLM的输出格式为markdown,并通过以下几点来控制输出,减少重试LLM。
  1. prompt中提供输出示例
  2. 输出格式使用简单的markdown语法,自己解析markdown
  3. 借助编程做好容错处理

2、prompt管理

我们采用模板技术来定义prompt,然后通过模板变量去控制prompt,比如多语言等。使用模板来管理prompt后,就不需要为不同的情况都写一份prompt,只需要抽象好prompt模板+模板变量即可。

3、prompt测试

可以在大模型第一梯队或者专门的prompt playground上测试:

在调试prompt的时候,温度(temperature)应该是最常用的一个选项。也就是设置不同的温度,可能会得到不同的效果。像总结文章这种需求,需要基于原文的事实,那最好是温度设置低一些,倾向0都可以。温度设置得很高,大于1,LLM就会更大概率做自由发挥了。还是看自己的业务场景,以及更多的测试。

4、prompt迭代

在开发AI产品的时候,不要纠结一步到位写好prompt,还是需要将重心放到完成整个业务流程和功能上。prompt的编写也和代码一样,需要持续的迭代、优化。所以,需要好的prompt管理方式,方便持续的迭代、测试改进。

虽然对prompt不断地打磨,调试,并不是一件roi很高的事情,但有时候你又不得不做。

5、实战示例

比如我想做一个文章阅读助手的任务型产品,你可以参考上述结构化prompt的要素来设计prompt模版:

你是一个文章阅读助手,我会给你一个文章链接,请根据以下步骤输出markdown格式的内容:

一、我们一步一步思考,阅读我提供的内容,并做出以下操作:
1、提取文章的元数据
- 标题:
- 作者:
- 标签:(阅读文章内容后给文章打上标签,标签通常是领域、学科或专有名词)
2、一句话总结这篇文章;
3、总结文章内容并写成摘要;
二、精读文章内容,并作出以下操作:
1、请详细地列举文章的大纲,并叙述大纲中每一部分的内容,
2、总结文章的结论;
3、列举读这篇文章,我可以学到哪些知识?
三、好的,接着
1、提取文章中的金句;
2、这篇文章里,作者有哪些独到的见解?

为你提供的文章链接为:{url}

由于国内月之暗面的kimi模型在阅读长文本上表现很好,我在kimi chat上测试了一下,能够比较好满足我们结构化的要求(当然如果输出的格式不满足我们的要求,在prompt设计时可以把预期的示例加上)。

最后,必须强调下,做任务型AI产品最好选择那些在chat bot中很难满足的场景或工作流,否则一旦用户掌握了在chat中使用prompt的方法,任务型AI产品的价值很快就被对话产品覆盖掉

### 设计大模型评估 Prompt 的方法 为了有效评估大语言模型的能力,设计高质量的提示语(Prompt)至关重要。以下是关于如何构建适合裁判员模型使用的评估 Prompt 的详细介绍。 #### 裁判员模型的工作原理 裁判员模型是一种专门训练的大规模语言模型,能够通过输入一对问题和候选答案来判断其质量并给出评分[^1]。这种模型通常会接收一组结构化的数据作为输入,例如问题、多个可能的回答以及一些上下文信息。它通过对这些回答的质量进行比较分析,最终输出一个分数或者排名结果[^2]。 #### 高效的大模型评估 Prompt 示例 下面提供几个具体的例子说明如何编写这样的 Prompts: ```plaintext 指令:给定一个问题及其对应的两个不同版本的答案,请根据准确性、逻辑性和流畅度三个方面分别打分(满分5分),最后综合考虑得出总评。 输入: { "question": "太阳为什么看起来是红色的?", "answer_a": "因为大气层散射掉了其他颜色的光。", "answer_b": "由于地球磁场的影响改变了光线的颜色。" } ``` 上述示例中的 Prompt 明确指出了评判标准,并提供了清晰的任务描述以便于裁判员理解他们需要什么[^3]。 另一个更复杂的多维度评价模板如下所示: ```plaintext 指导方针:对于每一个单独的标准项给予0到10之间的整数值评定;同时也要写出一段简短的理由解释为何如此打分。 具体项目包括但不限于以下几点: - 正确性 (Correctness): 是否完全解答了提问者所关心的内容? - 完备程度 (Comprehensiveness): 解释得是否全面深入? - 清晰易懂 (Clarity): 表述方式是否简单明了? 实例: 问题:"量子计算机有哪些主要优势?" 选项A:"它们可以解决传统电脑无法处理的问题." 选项B:"相比经典计算设备,能够在特定算法上实现指数级加速效果." 请按照以上准则逐一审查这两个回应... ``` 此类型的复杂 prompt 不仅定义好了各个考量因素的具体含义,还鼓励评审人员思考背后的原因,从而提高了反馈的价值。 #### 关键要素总结 当创建用于评估大型AI系统的 prompts 时,应牢记以下几个方面: 1. **明确目标** – 让参与者清楚知道他们的角色是什么样的; 2. **细化指标** – 将整体表现拆解成若干个小部分来进行独立考察; 3. **保持一致性**– 确保所有测试案例遵循相同的规则框架下执行; 4. **引导批判思维**– 教导用户如何去识别潜在偏差或错误之处。 ### 实现技巧建议 利用自动化工具辅助生成标准化问卷可以帮助节省时间成本的同时也提升了公平公正水平。此外还可以尝试引入更多样化的真实场景对话记录作为素材来源之一,这样可以让整个过程更加贴近实际应用需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老A的AI实验室

给博主点一杯卡布奇诺

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值