Lindeberg-Feller 定理

Lindeberg-Feller 定理

Lindeberg-Feller 定理是概率论中关于中心极限定理的一个重要结果,它提供了一种条件,使得独立同分布的随机变量的和的标准化形式在极限情况下收敛到标准正态分布。这个定理对于理解大数定律和中心极限定理的推广非常有帮助。

Lindeberg-Feller 定理陈述:X_1, X_2, ..., X_n 是独立同分布的随机变量,具有相同的均值 μ 和方差 σ^2。定义 S_n = X_1 + X_2 + ... + X_n,则对于任意 ε > 0,有:

lim ⁡ n → ∞ P ( S n − n μ σ n > ε ) = 1 − Φ ( ε ) \lim_{n \to \infty} P\left(\frac{S_n - n\mu}{\sigma \sqrt{n}} > \varepsilon\right) = 1 - \Phi(\varepsilon) nlimP(σn Snnμ>ε)=1Φ(ε)

其中,Φ(·) 是标准正态分布的累积分布函数。

Lindeberg条件

Lindeberg-Feller 定理的关键是 Lindeberg 条件。Lindeberg 条件是确保 Lindeberg-Feller 定理成立的一组条件。给定独立同分布的随机变量 X_1, X_2, ..., X_n,定义 S_n = X_1 + X_2 + ... + X_n,Lindeberg 条件如下:

Lindeberg 条件: 对于任意 ε > 0,有

lim ⁡ n → ∞ 1 σ 2 ∑ k = 1 n E [ ( X k − μ ) 2 ⋅ I { ( X k − μ ) 2 σ 2 > ε } ] = 0 \lim_{n \to \infty} \frac{1}{\sigma^2} \sum_{k=1}^{n} E\left[(X_k - \mu)^2 \cdot I\left\{\frac{(X_k - \mu)^2}{\sigma^2} > \varepsilon\right\}\right] = 0 nlimσ21k=1nE[(Xkμ)2I{σ2(Xkμ)2>ε}]=0

其中,I{·} 是指示函数。

Lindeberg 条件的直观解释是,随着样本量的增加,随机变量的方差被"适当地"控制,使得随机变量的和标准化后趋于正态分布。这个条件确保了每个随机变量对总和的贡献不会太大,从而维持了中心极限定理的有效性。

总的来说,Lindeberg-Feller 定理是中心极限定理的一个重要推广,适用于更一般的随机变量序列,并提供了一种更强大的工具来理解随机变量和它们和的渐近分布。

  • 24
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山莫衣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值