极限理论总结03:中心极限定理(CLT)与Edgeworth展开

05.中心极限定理

独立同分布情形(Lindeberg-Lévy CLT)

首先重温Lindeberg-Lévy中心极限定理

定理5.1:(Lindeberg-Lévy CLT)设 X 1 , … , X n \boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n} X1,,Xn 为 i.i.d.随机向量,记 μ = E ( X 1 ) \boldsymbol{\mu}=\mathrm{E}\left(\boldsymbol{X}_{1}\right) μ=E(X1) Σ = Cov ⁡ ( X 1 ) < ∞ \Sigma=\operatorname{Cov}\left(\boldsymbol{X}_{1}\right)<\infty Σ=Cov(X1)< n ( X ‾ n − μ ) → d N p ( 0 , Σ ) \sqrt{n}\left(\overline{\boldsymbol{X}}_{n}-\boldsymbol{\mu}\right) \stackrel{d}{\rightarrow} N_{p}(\mathbf{0}, \Sigma) n (Xnμ)dNp(0,Σ)

但方差有限不为必要条件。由此放宽CLT成立条件并得到如下定理:

定理5.2:设 X 1 , X 2 , … X_{1}, X_{2}, \ldots X1,X2, 为i.i.d. 随机变量. 存在常数列 a n a_{n} an b n b_{n} bn 使得 ( X ˉ n − a n ) / b n → d N ( 0 , 1 ) \left(\bar{X}_{n}-a_{n}\right) / b_{n} \stackrel{d}{\rightarrow} N(0,1) (Xˉnan)/bndN(0,1) 成立    ⟺    \iff x 2 P ( ∣ X 1 ∣ > x ) E ( X 1 2 1 { ∣ X 1 ∣ ≤ x } ) → 0 , x → ∞ \frac{x^{2} \mathrm{P}\left(\left|X_{1}\right|>x\right)}{\mathrm{E}\left(X_{1}^{2} 1_{\left\{\left|X_{1}\right| \leq x\right\}}\right)} \rightarrow 0, x \rightarrow \infty E(X121{X1x})x2P(X1>x)0,x

独立情形(Lindeberg-Feller& Lyapunov CLT)

s n 2 = ∑ i = 1 n σ i 2 s_{n}^{2} =\sum_{i=1}^{n} \sigma_{i}^{2} sn2=i=1nσi2,定义

Lindeberg-Feller条件:
1 s n 2 ∑ i = 1 n E [ ( X i − μ i ) 2 1 { ∣ X i − μ i ∣ > ϵ s n } ] → 0 , ∀ ϵ > 0 \frac{1}{s_{n}^{2}} \sum_{i=1}^{n} \mathrm{E}\left[\left(X_{i}-\mu_{i}\right)^{2} 1_{\left\{\left|X_{i}-\mu_{i}\right|>\epsilon s_{n}\right\}}\right] \rightarrow 0, \forall \epsilon>0 sn21i=1nE[(Xiμi)21{Xiμi>ϵsn}]0,ϵ>0
Lyapunov条件:
∑ i = 1 n E ∣ X i − μ i ∣ 2 + δ = o ( s n 2 + δ ) , ∃   δ > 0 \sum_{i=1}^{n} \mathrm{E}\left|X_{i}-\mu_{i}\right|^{2+\delta}=o\left(s_{n}^{2+\delta}\right), \exist\ \delta>0 i=1nEXiμi2+δ=o(sn2+δ), δ>0
注:Lindeberg-Feller条件 ⇒ \Rightarrow Lyapunov条件

由此得到Lindeberg-Feller和Lyapunov中心极限定理

定理5.2: (Lindeberg-Feller & Lyapunov CLT)设 X i X_{i} Xi 为独立随机向量有均值 μ i \mu_{i} μi 和有限方差 σ i 2 \sigma_{i}^{2} σi2. 令 s n 2 = ∑ i = 1 n σ i 2 . s_{n}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2} . sn2=i=1nσi2. 如果 Lindeberg-Feller 条件或 Lyapunov 条件成立,则有
∑ i = 1 n X i  is  A N ( ∑ i = 1 n μ i , s n 2 ) \sum_{i=1}^{n} X_{i} \text { is } A N\left(\sum_{i=1}^{n} \mu_{i}, s_{n}^{2}\right) i=1nXi is AN(i=1nμi,sn2)

例1:设 X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,,Xn 为独立随机变量且 X i ∼ X_{i} \sim Xi Uniform ( − i , i ) (-i, i) (i,i) 对任意 i = 1 , 2 , … , n . i=1,2, \ldots, n . i=1,2,,n. ∑ i = 1 n X i \sum_{i=1}^{n} X_{i} i=1nXi的极限分布。

解:由于 X i X_i Xi间无同分布条件,故尝试验证是否满足 Linderberg-Feller条件。

X i X_i Xi均值方差为: E ( X i ) = 0 , V a r ( X i ) = i 2 / 3 E(X_i)=0,Var(X_i)=i^2/3 E(Xi)=0,Var(Xi)=i2/3,对方差求和可得 s n 2 = ∑ i = 1 n V a r ( X i ) = n ( n + 1 ) ( 2 n + 1 ) / 18 = O ( n 3 ) s_n^2=\sum_{i=1}^n Var(X_i)=n(n+1)(2n+1)/18=O(n^3) sn2=i=1nVar(Xi)=n(n+1)(2n+1)/18=O(n3)

则有对足够大的 n n n, ∀ ϵ > 0 , ∣ X i ∣ ≤ i ≤ n < ϵ s n \forall \epsilon>0,|X_i|\le i\le n<\epsilon s_n ϵ>0,Xiin<ϵsn成立。由此可以得到:对足够大的 n n n, I { ∣ X i ∣ > ϵ s n } = 0 I_{\{|X_i|>\epsilon s_n\}}=0 I{Xi>ϵsn}=0

lim ⁡ n → ∞ ∑ i = 1 n E ( X i 2 1 { ∣ X i ∣ > ϵ s n } ) < ∞ \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathrm{E}\left(X_{i}^{2} 1_{\left\{\left|X_{i}\right|>\epsilon s_{n}\right\}}\right)<\infty limni=1nE(Xi21{Xi>ϵsn})<
s n → ∞ s_{n} \rightarrow \infty sn可得:Linderberg-Feller条件成立

综上 ∑ i = 1 n X i \sum_{i=1}^{n} X_{i} i=1nXi A N ( 0 , n ( n + 1 ) ( 2 n + 1 ) / 18 ) AN\left(0, n(n+1)(2n+1)/18\right) AN(0,n(n+1)(2n+1)/18)

例2:设 X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,,Xn 为独立随机变量且 X i ∼ Binomial ⁡ ( 1 , p i ) X_{i} \sim \operatorname{Binomial}\left(1, p_{i}\right) XiBinomial(1,pi) 对任意 i = 1 , 2 , … , n i=1,2, \ldots, n i=1,2,,n. 如果 ∑ i = 1 n p i ( 1 − p i ) → ∞ \sum_{i=1}^{n} p_{i}\left(1-p_{i}\right) \rightarrow \infty i=1npi(1pi),求 ∑ i = 1 n X i \sum_{i=1}^{n} X_{i} i=1nXi的极限分布。

解:

X i X_i Xi的均值和方差为 E ( X i ) = p i , Var ⁡ ( X i ) = p i ( 1 − p i ) \mathrm{E}\left(X_{i}\right)=p_{i}, \operatorname{Var}\left(X_{i}\right)=p_{i}\left(1-p_{i}\right) E(Xi)=pi,Var(Xi)=pi(1pi) ,对方差求和可得 s n 2 = ∑ i = 1 n p i ( 1 − p i ) s_{n}^{2}=\sum_{i=1}^{n} p_{i}\left(1-p_{i}\right) sn2=i=1npi(1pi)

计算

E ∣ X i − E ( X i ) ∣ 3 = ( 1 − p i ) 3 p i + p i 3 ( 1 − p i ) ≤ 2 p i ( 1 − p i ) \quad \mathrm{E}\left|X_{i}-\mathrm{E}\left(X_{i}\right)\right|^{3}=\left(1-p_{i}\right)^{3} p_{i}+p_{i}^{3}\left(1-p_{i}\right) \leq 2 p_{i}\left(1-p_{i}\right) EXiE(Xi)3=(1pi)3pi+pi3(1pi)2pi(1pi)

可得Lyapunov’s 条件: ∑ i = 1 n E ∣ X i − μ i ∣ 3 = o ( s n 3 ) \sum_{i=1}^{n} \mathrm{E}\left|X_{i}-\mu_{i}\right|^{3}=o\left(s_{n}^{3}\right) i=1nEXiμi3=o(sn3) 成立

综上, ∑ i = 1 n X i \sum_{i=1}^n X_i i=1nXi A N ( ∑ i = 1 n p i , ∑ i = 1 N p i ( 1 − p i ) ) AN(\sum_{i=1}^n p_i,\sum_{i=1}^N p_i(1-p_i)) AN(i=1npi,i=1Npi(1pi))

双序列独立情形(Lindeberg-Feller& Lyapunov &Hájek-Sidak CLT)

以上为 X i X_i Xi不随 n n n的变化而变化情形,当 X i X_i Xi的均值与方差与 n n n有关时,(例如对于独立的 X i X_i Xi,均值为 μ \mu μ,方差为 σ i 2 = i 2 σ 2 \sigma_i^2=i^2\sigma^2 σi2=i2σ2时, μ \mu μ B L U E BLUE BLUE μ ^ B L U E = ∑ i = 1 n σ i − 2 X i / ∑ i = 1 n σ i − 2 \widehat{\mu}_{\mathrm{BLUE}}=\sum_{i=1}^{n} \sigma_{i}^{-2} X_{i} / \sum_{i=1}^{n} \sigma_{i}^{-2} μ BLUE=i=1nσi2Xi/i=1nσi2,权重 w i w_i wi n n n有关),以上中心极限定理不可使用。下给出双序列下的中心极限定理。

定理5.3:(Lindeberg-Feller & Lyapunov 中心极限定理)设对每个 n ≥ 1 , { X n i , 1 ≤ i ≤ k n } n \geq 1,\left\{X_{n i}, 1 \leq i \leq k_{n}\right\} n1,{Xni,1ikn}, 独立且有均值 μ n i \mu_{n i} μni 和有限方差 σ n i 2 \sigma_{n i}^{2} σni2. 令 s n 2 = ∑ i = 1 k n σ n i 2 s_{n}^{2}=\sum_{i=1}^{k_{n}} \sigma_{n i}^{2} sn2=i=1knσni2. 如果 Lindeberg-Feller 条件
1 s n 2 ∑ i = 1 k n E [ ( X n i − μ n i ) 2 1 { ∣ X n i − μ n i ∣ > ϵ n } ] → 0 , ∀ ϵ > 0 \frac{1}{s_{n}^{2}} \sum_{i=1}^{k_{n}} \mathrm{E}\left[\left(X_{n i}-\mu_{n i}\right)^{2} 1_{\left\{\left|X_{n i}-\mu_{n i}\right|>\epsilon_{n}\right\}}\right] \rightarrow 0, \forall \epsilon>0 sn21i=1knE[(Xniμni)21{Xniμni>ϵn}]0,ϵ>0
或 Lyapunov 条件
∑ i = 1 k n E ∣ X n i − μ n i ∣ 2 + δ = o ( s n 2 + δ ) , ∃   δ > 0 \sum_{i=1}^{k_{n}} \mathrm{E}\left|X_{n i}-\mu_{n i}\right|^{2+\delta}=o\left(s_{n}^{2+\delta}\right), \exist \ \delta>0 i=1knEXniμni2+δ=o(sn2+δ), δ>0
成立,则
∑ i = 1 k n X n i  is  A N ( ∑ i = 1 k n μ n i , s n 2 ) \sum_{i=1}^{k_{n}} X_{n i} \text { is } A N\left(\sum_{i=1}^{k_{n}} \mu_{n i}, s_{n}^{2}\right) i=1knXni is AN(i=1knμni,sn2)

以上定理说明,若对于双序列情形随机变量,Lindeberg-Feller 或Lyapunov 成立,仍然可以说明随机向量的和是服从渐进正态分布的。

下提供一种计算更简便,但结论更严苛的条件。

定理5.4:(Hájek-Sidak)设 X i X_{i} Xi 独立同分布,均值为 μ \mu μ ,方差有限为 σ 2 . \sigma^{2} . σ2. w n = ( w n 1 , w n 2 , … , w n n ) w_{n}=\left(w_{n 1}, w_{n 2}, \ldots, w_{n n}\right) wn=(wn1,wn2,,wnn) 为常向量且有
max ⁡ 1 ≤ i ≤ n w n i 2 ∑ j = 1 n w n j 2 → 0 \max _{1 \leq i \leq n} \frac{w_{n i}^{2}}{\sum_{j=1}^{n} w_{n j}^{2}} \rightarrow 0 1inmaxj=1nwnj2wni20
n → ∞ n \rightarrow \infty n.则 ∑ i = 1 n w n i X i \sum_{i=1}^{n} w_{n i} X_{i} i=1nwniXi A N ( ∑ i = 1 n w n i μ , ∑ i = 1 n w n i 2 σ 2 ) A N\left(\sum_{i=1}^{n} w_{n i} \mu, \sum_{i=1}^{n} w_{n i}^{2} \sigma^{2}\right) AN(i=1nwniμ,i=1nwni2σ2).

定义 Hájek-Sidak条件 max ⁡ 1 ≤ i ≤ n w n i 2 ∑ j = 1 n w n j 2 → 0 \max _{1 \leq i \leq n} \frac{w_{n i}^{2}}{\sum_{j=1}^{n} w_{n j}^{2}} \rightarrow 0 max1inj=1nwnj2wni20

注: 可以理解为在常数向量 w n w_n wn中,每一个元素 w n i w_{n_i} wni都不会主导 w n w_n wn

多元Lindeberg-Feller CLT

定理5.5:设对任意 n ≥ 1 , { X n i , 1 ≤ i ≤ k n } n \geq 1,\left\{\boldsymbol{X}_{n i}, 1 \leq i \leq k_{n}\right\} n1,{Xni,1ikn} 独立且有均值 μ n i \boldsymbol{\mu}_{n i} μni 和有限协方差阵 Σ n i \Sigma_{n i} Σni. 若 k n − 1 ∑ i = 1 k n Σ n i → Σ k_{n}^{-1} \sum_{i=1}^{k_{n}} \Sigma_{n i} \rightarrow \Sigma kn1i=1knΣniΣ对有限正定阵 Σ \Sigma Σ
k n − 1 ∑ i = 1 k n E [ ∥ X n i − μ n i ∥ 2 1 { ∥ x n i − μ n ∥ ∣ > ϵ k n } } ] → 0 ,  for every  ϵ > 0 \left.k_{n}{ }^{-1} \sum_{i=1}^{k_{n}} \mathrm{E}\left[\left\|\boldsymbol{X}_{n i}-\boldsymbol{\mu}_{n i}\right\|^{2} 1_{\left\{\left\|\boldsymbol{x}_{n i}-\boldsymbol{\mu}_{n}\right\|\right.} \mid>\epsilon \sqrt{\left.\mathrm{k}_{n}\right\}}\right\}\right] \rightarrow 0, \text { for every } \epsilon>0 kn1i=1knE[Xniμni21{xniμn>ϵkn} }]0, for every ϵ>0
成立,则渐进正态性成立。

随机数量和(Anscombe-Rényi CLT)

定理5.6:(Anscombe-Rényi)设 X i X_{i} Xi 为i.i.d. 随机变量且有均值 μ \mu μ,有限方差 σ 2 \sigma^{2} σ2. 令 N n N_{n} Nn 为一系列正整数随机变量 , a n a_{n} an 为常数列且趋近于无穷,有 N n / a n → p c N_{n} / a_{n} \stackrel{p}{\rightarrow} c Nn/anpc其中 c c c正常数. 则有,

N n ( X ˉ N n − μ ) → d N ( 0 , σ 2 ) \sqrt{N_{n}}\left(\bar{X}_{N_{n}}-\mu\right) \stackrel{d}{\rightarrow} N\left(0, \sigma^{2}\right) Nn (XˉNnμ)dN(0,σ2)

m-相依序列

定义(m-相依):对于平稳序列 { X i , i = 1 , … , n } \left\{X_{i}, i=1, \ldots, n\right\} {Xi,i=1,,n} ,和给定的m,如果当 j − i > m j-i>m ji>m时, ( X 1 , X 2 , … , X i ) \left(X_{1}, X_{2}, \ldots, X_{i}\right) (X1,X2,,Xi) ( X j , X j + 1 , … , X n ) \left(X_{j}, X_{j+1}, \ldots, X_{n}\right) (Xj,Xj+1,,Xn) 独立, 则称平稳序列 { X i , i = 1 , … , n } \left\{X_{i}, i=1, \ldots, n\right\} {Xi,i=1,,n} 为m-相依序列

例如:滑动平均序列为m-相依序列

定理5.7:设 { X i , i = 1 , … , n } \left\{X_{i}, i=1, \ldots, n\right\} {Xi,i=1,,n}为平稳m-相依序列。 令 E ( X i ) = μ \mathrm{E}\left(X_{i}\right)=\mu E(Xi)=μ Var ⁡ ( X i ) = σ 2 < ∞ . \operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty . Var(Xi)=σ2<. n ( X ˉ n − μ ) → d N ( 0 , τ 2 ) \sqrt{n}\left(\bar{X}_{n}-\mu\right) \stackrel{d}{\rightarrow} N\left(0, \tau^{2}\right) n (Xˉnμ)dN(0,τ2), 其中 τ 2 = σ 2 + 2 ∑ k = 1 m γ k \tau^{2}=\sigma^{2}+2 \sum_{k=1}^{m} \gamma_{k} τ2=σ2+2k=1mγk

收敛速度(Berry-Esséen)

独立同分布

定理5.8(Berry-Esséen):设 X i X_{i} Xi 为 i.i.d. 随机向量有均值 μ \mu μ, 方差 σ 2 \sigma^{2} σ2 E ∣ X 1 − μ ∣ 3 < ∞ \mathrm{E}\left|X_{1}-\mu\right|^{3}<\infty EX1μ3< 则存在与n和 X i X_i Xi分布无关的常数 C C C,使得
sup ⁡ x ∣ P ( S ~ n ≤ x ) − Φ ( x ) ∣ ≤ C n E ∣ X 1 − μ ∣ 3 σ 3 \sup _{x}\left|\mathrm{P}\left(\tilde{S}_{n} \leq x\right)-\Phi(x)\right| \leq \frac{C}{\sqrt{n}} \frac{\mathrm{E}\left|X_{1}-\mu\right|^{3}}{\sigma^{3}} supxP(S~nx)Φ(x)n Cσ3EX1μ3 对所有 n n n成立。

仅独立

定理5.9:设 X i X_{i} Xi 独立,有均值 μ i \mu_{i} μi, 方差 σ i 2 \sigma_{i}^{2} σi2 E ∣ X i − μ i ∣ 3 < ∞ . \mathrm{E}\left|X_{i}-\mu_{i}\right|^{3}<\infty . EXiμi3<. 则存在与n和 X i X_i Xi分布无关的常数 C ∗ C^* C,使得
sup ⁡ x ∣ P ( S ~ n ≤ x ) − Φ ( x ) ∣ ≤ C ∗ ∑ i = 1 n E ∣ X i − μ i ∣ 3 ( ∑ i = 1 n σ i 2 ) 3 / 2 \sup _{x}\left|\mathrm{P}\left(\tilde{S}_{n} \leq x\right)-\Phi(x)\right| \leq \frac{C^{*} \sum_{i=1}^{n} \mathrm{E}\left|X_{i}-\mu_{i}\right|^{3}}{\left(\sum_{i=1}^{n} \sigma_{i}^{2}\right)^{3 / 2}} xsupP(S~nx)Φ(x)(i=1nσi2)3/2Ci=1nEXiμi3
对所有 n n n成立

由定理5.8和5.9,可用来控制渐进误差的大小,即控制精度的大小。

以下定理5.10给出在点x的局部误差上界

定理5.10:设 X i X_{i} Xi 独立,有均值 μ i \mu_{i} μi, 方差 σ i 2 \sigma_{i}^{2} σi2, 和 E ∣ X i − μ i ∣ 2 + δ < ∞ \mathrm{E}\left|X_{i}-\mu_{i}\right|^{2+\delta}<\infty EXiμi2+δ< ∃ 0 < δ ≤ 1 \exist 0<\delta \leq 1 0<δ1. 则
∣ P ( S ~ n ≤ x ) − Φ ( x ) ∣ ≤ C ∗ ∗ 1 + ∣ x ∣ 2 + δ ∑ i = 1 n E ∣ X i − μ i ∣ 2 + δ ( ∑ i = 1 n σ i 2 ) 1 + δ / 2 \left|\mathrm{P}\left(\tilde{S}_{n} \leq x\right)-\Phi(x)\right| \leq \frac{C^{* *}}{1+|x|^{2+\delta}} \frac{\sum_{i=1}^{n} \mathrm{E}\left|X_{i}-\mu_{i}\right|^{2+\delta}}{\left(\sum_{i=1}^{n} \sigma_{i}^{2}\right)^{1+\delta / 2}} P(S~nx)Φ(x)1+x2+δC(i=1nσi2)1+δ/2i=1nEXiμi2+δ
其中 C ∗ ∗ C^{* *} C为与 n n n和分布无关的常数.

Edgeworth展开

定义:

  • X X X矩母函数 (m.g.f.) 定义为 ψ X ( t ) = E { exp ⁡ ( t ⊤ X ) } \psi_{\boldsymbol{X}}(\boldsymbol{t})=\mathrm{E}\left\{\exp \left(\boldsymbol{t}^{\top} \boldsymbol{X}\right)\right\} ψX(t)=E{exp(tX)}

  • 0 < ψ X ( t ) < ∞ 0<\psi_{\boldsymbol{X}}(\boldsymbol{t})<\infty 0<ψX(t)<时, X X X累积量母函数 (c.g.f.) 定义为 κ X ( t ) = log ⁡ ψ X ( t ) \kappa_{\boldsymbol{X}}(\boldsymbol{t})=\log \psi_{\boldsymbol{X}}(\boldsymbol{t}) κX(t)=logψX(t)

定理5.11(Two-Term Edgeworth Expansion):

X 1 , X 2 , ⋯ ∼ i . i . d X X_1,X_2,\cdots \stackrel{i.i.d}{\sim}X X1,X2,i.i.dX X X X 分布绝对连续,均值 μ \mu μ、方差 σ 2 \sigma^2 σ2和四阶矩 E ( X 4 ) < ∞ . \mathrm{E}\left(X^{4}\right)<\infty . E(X4)<. Z n = n ( X ˉ n − μ ) σ Z_n=\frac{\sqrt n (\bar X_n-\mu)}{\sigma} Zn=σn (Xˉnμ)的分布函数可写为:
F Z n ( x ) = Φ ( x ) + n − 1 / 2 p 1 ( x ) ϕ ( x ) + n − 1 p 2 ( x ) ϕ ( x ) + O ( n − 3 / 2 ) F_{Z_{n}}(x)=\Phi(x)+n^{-1 / 2} p_{1}(x) \phi(x)+n^{-1} p_{2}(x) \phi(x)+O\left(n^{-3 / 2}\right) FZn(x)=Φ(x)+n1/2p1(x)ϕ(x)+n1p2(x)ϕ(x)+O(n3/2)
x x x一致成立, 其中 p 1 ( x ) = − 1 6 κ 3 ( x 2 − 1 ) p_{1}(x)=-\frac{1}{6} \kappa_{3}\left(x^{2}-1\right) p1(x)=61κ3(x21) p 2 ( x ) = − x { 1 24 κ 4 ( x 2 − 3 ) + 1 72 κ 3 2 ( x 4 − 10 x 2 + 15 ) } p_{2}(x)=-x\left\{\frac{1}{24} \kappa_{4}\left(x^{2}-3\right)+\frac{1}{72} \kappa_{3}^{2}\left(x^{4}-10 x^{2}+15\right)\right\} p2(x)=x{241κ4(x23)+721κ32(x410x2+15)}

Edgeworth展开可理解为中心极限定理的推广,独立和的高阶展开;类似于对于非随机函数的Taylor展开。

在统计学和R语言中,中心极限定理(Central Limit Theorem,CLT)是一个基本的概率论原理,它指出,当从一个总体中随机抽取大量独立且同分布的样本时,样本均值(或和)的分布会趋近于正态分布,无论这个总体的分布是什么样的。即使原始数据不是正态分布,只要样本量足够大(通常认为30个样本以上),样本均值的分布就可以近似为一个标准正态分布。 在R语言中,你可以通过以下步骤来验证中心极限定理: 1. **生成非正态分布的样本**:使用`rnorm()`函数生成一个特定分布(如泊松、均匀等)的样本数据。 ```R set.seed(123) # 为了保证结果可重复 non_normal_data <- rpois(n = 1000, lambda = 5) ``` 2. **计算样本均值**:使用`mean()`函数计算样本均值。 ```R sample_mean <- mean(non_normal_data) ``` 3. **检验样本均值的分布**:使用`shapiro.test()`函数进行Shapiro-Wilk正态性检验,检查样本均值是否接近正态分布。 ```R shapiro_test <- shapiro.test(sample_mean) p_value <- shapiro_test$p.value if (p_value > 0.05) { print("样本均值的分布接近正态") } else { print("样本均值的分布不明显为正态,可能需要更大样本量") } ``` 4. **绘制样本均值的直方图或密度图**:使用`hist()`或`density()`函数可视化样本均值的分布,观察其是否呈现出正态分布的形状。 ```R hist(sample_mean, freq = FALSE, main = "Sample Mean Distribution", xlab = "Mean") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值