概率分布、概率密度、概率函数、分布函数之间区别

这篇博客详细介绍了概率分布的概念,包括随机变量、离散型和连续型随机变量的概率分布。概率密度是对连续型随机变量的描述,而分布函数则是一个永不递减的函数,表示到某个点为止的所有概率累积。对于连续随机变量,分布函数是概率密度的积分。博客还强调了这些概念在统计和数据分析中的基础作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自变量是随机变量,它可以取很多值,每个值都对应这一个概率,这些所有概率加起来等于1,这是我们知道的关于概率最基本的一个概念。

下面来看看题目中的问题:

概率分布就是说随机变量(自变量)和每个随机变量对应的概率,这就是概率分布。

        上图的随机变量是离散的,如果随机变量是连续的,那么概率分布就可以叫概率密度

概率函数和概率分布、概率密度是一样的,只是说用函数表达式写出来而已。

分布函数和前面三个有点不太一样,分布函数某一点的值是该点前面所有概率的累加。

        分布函数是一个永不递减的函数,最右边即为最大值1,最左边为最小值0。

        对于连续型随机变量的分布函数而言,它就是概率密度的积分,积分范围为负无穷到当前随机变量值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值