# 掌握JSON解析:使用模型生成和解析结构化输出
在当今的技术应用中,与AI模型进行交互以获得结构化数据变得愈发重要。本文将介绍如何利用输出解析器来指定任意JSON schema,并从AI模型中获取符合该schema的输出,最终解析为JSON格式。本文内容适用于具备基本AI模型和输出解析器概念的读者。
## JSON输出解析的关键概念
虽然一些模型提供商支持返回结构化输出,但不是所有都支持。我们可以使用输出解析器,例如`JsonOutputParser`,在提示中指定JSON schema,与模型交互以获取匹配该schema的输出,并将其解析为JSON。
### 准备工作
在开始之前,请确保你具备以下知识:
- 聊天模型的使用
- 输出解析器的概念
- 提示模板的构建
- 结构化输出的获取
### 使用JsonOutputParser
`JsonOutputParser`是一个内置选项,用于解析JSON输出。它可以与`Pydantic`结合使用,以便更方便地声明预期的JSON schema。以下是一个完整的代码示例:
```python
# 使用API代理服务提高访问稳定性
%pip install -qU langchain langchain-openai
import os
from getpass import getpass
# 设置API密钥
os.environ["OPENAI_API_KEY"] = getpass()
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAI
# 初始化模型
model = ChatOpenAI(temperature=0)
# 定义数据结构
class Joke(BaseModel):
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
# 定义查询
joke_query = "Tell me a joke."
# 设置解析器和提示模板
parser = JsonOutputParser(pydantic_object=Joke)
prompt = PromptTemplate(
template="Answer the user query.\n{format_instructions}\n{query}\n",
input_variables=["query"],
partial_variables={"format_instructions": parser.get_format_instructions()},
)
# 链接模型与解析器
chain = prompt | model | parser
# 解析结果
chain.invoke({"query": joke_query})
常见问题和解决方案
问题1: 大型语言模型输出不稳定
解决方案: 使用具有足够容量的模型来生成格式良好的JSON,并考虑使用API代理以提高访问稳定性。
问题2: JSON Schema不匹配
解决方案: 在提示模板中尝试添加或修改格式化提示,确保输出符合预期的JSON schema。
总结和进一步学习资源
在本教程中,我们探索了如何通过解析输出来获取结构化JSON数据。这只是起点,您还可以探索其他获取结构化输出的技术。
进一步学习资源
参考资料
- Langchain 官方文档
- OpenAI API 文档
- Pydantic 官方文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---