DiT(Diffusion Transformer)及其研究进展简述

在这里插入图片描述

一、DiT(Diffusion Transformer)的定义与架构

1. 定义

DiT(Diffusion Transformer)是一种结合了扩散模型(Diffusion Models)和Transformer架构的生成模型,主要用于图像和视频生成任务。其核心思想是用Transformer替代传统扩散模型中的U-Net架构,利用Transformer的全局建模能力提升生成质量与扩展性。DiT在潜空间(Latent Space)中操作,通过变分自编码器(VAE)将高维图像压缩为低维特征,从而降低计算复杂度。

2. 架构与核心组件

在这里插入图片描述

DiT的架构可分为以下几个关键模块:

  • 输入处理
    输入图像经过VAE编码为低维潜变量(如32×32×4的Latent),随后通过Patchify将潜变量划分为多个图像块(Patch),每个Patch通过线性投影转换为Token序列,并加入位置编码(固定正弦-余弦编码)。

### Diffusion Transformer (DiT) 概述 Diffusion Transformer 是一种创新性的扩散模型,融合了去噪扩散概率模型(DDPM)和Transformer架构的特点[^1]。这种组合使得 DiT 不仅继承了传统扩散模型的强大生成能力,还具备了 Transformer 架构处理序列数据的优势。 ### 工作原理 #### 扩散过程 在传统的扩散模型中,图像或其他形式的数据通过一系列逐步增加噪声的过程被破坏,最终变成纯噪声。而在反向过程中,则是从纯噪声逐渐恢复到原始数据的状态。这一正向和反向过程构成了扩散模型的核心机制[^3]。 对于 Diffusion Transformer 来说,在前向传播阶段会按照一定的时间步长 t 向输入加入高斯白噪音;到了逆向重建环节则依赖于训练好的网络预测每一步应该去除多少噪音来逼近原图特征分布。此过程可以表示为: \[ q(\mathbf{x}_t|\mathbf{x}_{t-1})=\mathcal{N}(\sqrt{1-\beta_t}\mathbf{x}_{t-1};\mathbf{0},\beta_t \mathbf{I}) \] 其中 \(q\) 表示真实数据的概率密度函数,\(β_t\) 控制着每次迭代时所引入的新随机成分的比例大小。 #### Transformer 结合 为了更好地捕捉长期依赖关系并提高建模效率,Diffusion Transformer 将经典的自注意力机制融入进来。具体而言,通过对不同时间戳下的状态进行编码解码操作,实现了对整个演变路径的有效学习与模拟。此外,采用 Patchify 技术将图片切分成多个小块作为 token 输入给 transformer 层进一步增强了局部细节的表现力。 ```python class DiTBlock(nn.Module): def __init__(self, dim, num_heads=8, mlp_ratio=4., drop_path_rate=0.): super().__init__() self.norm1 = nn.LayerNorm(dim) self.attn = Attention(dim, num_heads=num_heads) # MLP block follows the attention layer. hidden_features = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=hidden_features, out_features=dim, act_layer=nn.GELU, drop=drop_path_rate) def forward(self, x): shortcut = x x = self.norm1(x) x = self.attn(x) x += shortcut x = x + self.mlp(self.norm2(x)) return x ``` 这段代码展示了如何实现一个基本的 DiT Block,它包含了标准化层、多头注意模块以及一个多层感知机组成的MLP结构用于增强表达能力。 ### 应用场景 由于其独特的设计思路,Diffusion Transformer 可广泛应用于多种领域内的复杂任务之中,比如但不限于自然语言处理中的文本摘要生成、机器翻译;计算机视觉方面的人脸识别、风格迁移等。相较于其他类型的生成对抗网络GANs 或者变分自动编码VAEs ,DiTs 更擅长解决那些需要精确控制输出质量的任务,并且能够提供更加稳定可靠的性能表现[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AndrewHZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值