从扩散模型基础到DIT

本文详细介绍了扩散模型的工作原理,如DDPM如何通过噪声预测和去噪,以及UNET在噪声预测器中的应用。还讨论了StableDiffusion如何利用VAE加速图像生成,并提到了DIT和SORA模型的优势,包括Transformer技术带来的可扩展性和性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Diffusion model 扩散模型如何工作?

输入随机噪声和文本内容,通过多次预测并去除图片中的噪声后,最终生成清晰的图像。

以上左边这张图,刚开始是随机噪声,999为时间序列。

为什么不直接预测下一张图片呢?

预测噪声还是简单一点。

如何训练 Noise Predicter呢?

具体的方法是自己去按步骤加噪音,这样就构建了训练样本。预测目标就是我们加的噪声。

如何加入文字?

可以看出,增加文字输入即可

DDPM原理

当然具体的噪声loss计算,以及去噪公式稍微麻烦一点,并不是直接加减。

### 视频生成模型 DiT 的工作原理 视频生成模型 DiT (Diffusion in Time) 是一种专门用于视频合成的技术,它通过引入时间维度上的扩散过程来改进传统图像扩散模型的能力。这种模型不仅能够捕捉单帧内的空间特征,还能有效处理跨多帧的时间依赖关系。 #### 时间维度上的扩散机制 在传统的扩散模型基础上,DiT 进一步扩展了噪声逐步去除的过程至连续的多个视频帧之间。具体来说,在训练阶段,随机选取一段短视频序列并加入高斯白噪音;随后迭代减少该段落内每一帧所含有的干扰成分直至恢复原始清晰度。此过程中特别设计了一种时空联合条件分布函数pθ(xt|x0,t−1),用来指导去噪方向既符合当前时刻也兼顾前后相邻瞬间的状态转移特性[^1]。 #### 应用场景 由于具备强大的动态内容理解和创造能力,DiT 可广泛应用于影视制作、虚拟现实等领域: - **特效生成**:利用DiT可以从少量样本中学习特定风格的动作模式,并据此批量生产高质量视觉效果素材; - **交互式娱乐体验开发**:借助于快速响应用户输入调整输出结果的特点,支持构建更加沉浸式的AR/VR环境; - **个性化推荐系统增强**:通过对大量历史播放记录的学习分析,预测观众偏好趋势进而提供定制化节目列表建议。 ```python import torch from dit import DiffusionInTimeModel model = DiffusionInTimeModel() video_tensor = torch.randn((batch_size, num_frames, channels, height, width)) output_video = model(video_tensor) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值