Diffusion model 扩散模型如何工作?
输入随机噪声和文本内容,通过多次预测并去除图片中的噪声后,最终生成清晰的图像。
以上左边这张图,刚开始是随机噪声,999为时间序列。
为什么不直接预测下一张图片呢?
预测噪声还是简单一点。
如何训练 Noise Predicter呢?
具体的方法是自己去按步骤加噪音,这样就构建了训练样本。预测目标就是我们加的噪声。
如何加入文字?
可以看出,增加文字输入即可
DDPM原理
当然具体的噪声loss计算,以及去噪公式稍微麻烦一点,并不是直接加减。