从扩散模型基础到DIT

Diffusion model 扩散模型如何工作?

输入随机噪声和文本内容,通过多次预测并去除图片中的噪声后,最终生成清晰的图像。

以上左边这张图,刚开始是随机噪声,999为时间序列。

为什么不直接预测下一张图片呢?

预测噪声还是简单一点。

如何训练 Noise Predicter呢?

具体的方法是自己去按步骤加噪音,这样就构建了训练样本。预测目标就是我们加的噪声。

如何加入文字?

可以看出,增加文字输入即可

DDPM原理

当然具体的噪声loss计算,以及去噪公式稍微麻烦一点,并不是直接加减。

左图中为噪声的均方误差loss计算。

图中XT为T时刻的有噪图片,Xt-1为去噪后的图片。

UNET噪声预测器

对于Stable Diffusion等主流的扩散模型,噪声预测部分都是使用UNET。图示结构如下,可以看出输入含噪声图片,输出噪声

训练代码如下:

这里nn_model即为UNET网络,支持图片,时间和文本上下文嵌入等相关信息。参考代码如下:

 

训练代码

预测代码

DDIM

比DDPM快10倍,采样步数到500步以上DDPM更好,否则DDIM更好。

Stable Diffusion

其他模型结构如下,很类似。

引入VAE(变分自编码器)

为了加快图像生成过程,Stable Diffusion 并不是在像素图像本身上运行扩散过程,而是在图像的压缩版本上运行。该论文称其为“Departure to Latent Space”。

https://arxiv.org/abs/2112.10752

这种压缩(以及后来的解压缩/绘画)是通过自动编码器完成的。自动编码器将图像压缩到潜空间(Latents),然后使用解码器凭借这些压缩后的数据重建。

实际使用过程中直接调用已经训练好的VAE做编码和解码即可。原理如下:

参考:Stable Diffusion|图解稳定扩散原理 - 知乎

模型细节如下:

注意这里的文本也是做了编码为向量。

DIT(Scalable diffusion models with transformers)

基于transformers的可扩展的扩散模型

DIT利用transformer替换了unet.

有什么好处? 更高的Gflops(网络复杂度),具备更好的扩展性scaling(tokens扩展,网络深度扩展,增加参数量就能有更好的性能),有较低的t FID of 2.27 即预测效果

transformer统一了NLP和视觉领域,SORA正是基于此论文完成主体部分。

什么是FID

即衡量两张图片之间的相似性。

从它的训练和预测代码中,我们看到也使用了训练好的VAE模型。

训练时调用encoder

预测时调用decoder

SORA

​在上一篇文章中已经介绍过

  • 16
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值