## 引言
在数据驱动的时代,微信等即时通讯工具的重要性日益增加。然而,由于平台限制,从微信导出个人聊天记录并不是一件简单的事。本文将介绍如何使用LangChain库,将复制粘贴的微信聊天记录转化为有效的数据结构,以便于模型微调或少样本学习。
## 主要内容
### 创建消息转储
首先,我们需要在微信桌面应用中打开聊天窗口,并选择所需的消息。每次最多选择100条消息,按CMD/Ctrl+C复制,然后粘贴到本地文本文件中。例如:
```plaintext
%%writefile wechat_chats.txt
女朋友 2023/09/16 2:51 PM
天气有点凉
男朋友 2023/09/16 2:51 PM
珍簟凉风著,瑶琴寄恨生。嵇君懒书札,底物慰秋情。
定义聊天加载器
接下来,我们定义一个WeChatChatLoader
类,用于读取和解析微信导出的文本文件。
import re
from typing import List
from langchain_community.chat_loaders import base as chat_loaders
from langchain_core.messages import BaseMessage, HumanMessage
class WeChatChatLoader(chat_loaders.BaseChatLoader):
def __init__(self, path: str):
self.path = path
self._message_line_regex = re.compile(
r"(?P<sender>.+?) (?P<timestamp>\d{4}/\d{2}/\d{2} \d{1,2}:\d{2} (?:AM|PM))",
)
def _append_message_to_results(
self, results: List, current_sender: str, current_timestamp: str, current_content: List[str],
):
content = "\n".join(current_content).strip()
if not re.match(r"\[.*\]", content):
results.append(
HumanMessage(
content=content,
additional_kwargs={
"sender": current_sender,
"events": [{"message_time": current_timestamp}],
},
)
)
return results
def lazy_load(self):
with open(self.path, "r", encoding="utf-8") as file:
lines = file.readlines()
results: List[BaseMessage] = []
current_sender = None
current_timestamp = None
current_content = []
for line in lines:
if re.match(self._message_line_regex, line):
if current_sender and current_content:
results = self._append_message_to_results(
results, current_sender, current_timestamp, current_content
)
current_sender, current_timestamp = re.match(
self._message_line_regex, line
).groups()
current_content = []
else:
current_content.append(line.strip())
if current_sender and current_content:
results = self._append_message_to_results(
results, current_sender, current_timestamp, current_content
)
yield chat_loaders.ChatSession(messages=results)
加载消息
loader = WeChatChatLoader(path="./wechat_chats.txt")
raw_messages = loader.lazy_load()
我们可以使用这些消息进行模型微调或其他任务。
代码示例
from langchain_community.chat_loaders.utils import map_ai_messages, merge_chat_runs
# 假设格式正确,转换聊天记录为LangChain消息
merged_messages = merge_chat_runs(raw_messages)
messages = list(map_ai_messages(merged_messages, sender="男朋友"))
# 使用OpenAI的Chat API进行预测
from langchain_openai import ChatOpenAI
llm = ChatOpenAI() # 使用API代理服务提高访问稳定性
for chunk in llm.stream(messages[0]["messages"]):
print(chunk.content, end="", flush=True)
常见问题和解决方案
-
如何处理非文本消息?
代码中使用正则表达式跳过非文本消息(如表情、图片等)。确保正则表达式匹配所有非文本格式。
-
如何应对网络限制?
由于某些地区的网络限制,建议使用API代理服务以提高访问稳定性。
总结和进一步学习资源
本篇文章教你如何利用LangChain将微信聊天记录转化为数据格式,方便进行进一步的自然语言处理任务。建议读者了解更多关于LangChain的文档和API使用方式。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---