[解锁微信聊天:使用LangChain高效转换消息格式]

## 引言

在数据驱动的时代,微信等即时通讯工具的重要性日益增加。然而,由于平台限制,从微信导出个人聊天记录并不是一件简单的事。本文将介绍如何使用LangChain库,将复制粘贴的微信聊天记录转化为有效的数据结构,以便于模型微调或少样本学习。

## 主要内容

### 创建消息转储

首先,我们需要在微信桌面应用中打开聊天窗口,并选择所需的消息。每次最多选择100条消息,按CMD/Ctrl+C复制,然后粘贴到本地文本文件中。例如:

```plaintext
%%writefile wechat_chats.txt
女朋友 2023/09/16 2:51 PM
天气有点凉

男朋友 2023/09/16 2:51 PM
珍簟凉风著,瑶琴寄恨生。嵇君懒书札,底物慰秋情。

定义聊天加载器

接下来,我们定义一个WeChatChatLoader类,用于读取和解析微信导出的文本文件。

import re
from typing import List
from langchain_community.chat_loaders import base as chat_loaders
from langchain_core.messages import BaseMessage, HumanMessage

class WeChatChatLoader(chat_loaders.BaseChatLoader):
    def __init__(self, path: str):
        self.path = path
        self._message_line_regex = re.compile(
            r"(?P<sender>.+?) (?P<timestamp>\d{4}/\d{2}/\d{2} \d{1,2}:\d{2} (?:AM|PM))",
        )

    def _append_message_to_results(
        self, results: List, current_sender: str, current_timestamp: str, current_content: List[str],
    ):
        content = "\n".join(current_content).strip()
        if not re.match(r"\[.*\]", content):
            results.append(
                HumanMessage(
                    content=content,
                    additional_kwargs={
                        "sender": current_sender,
                        "events": [{"message_time": current_timestamp}],
                    },
                )
            )
        return results

    def lazy_load(self):
        with open(self.path, "r", encoding="utf-8") as file:
            lines = file.readlines()

        results: List[BaseMessage] = []
        current_sender = None
        current_timestamp = None
        current_content = []
        for line in lines:
            if re.match(self._message_line_regex, line):
                if current_sender and current_content:
                    results = self._append_message_to_results(
                        results, current_sender, current_timestamp, current_content
                    )
                current_sender, current_timestamp = re.match(
                    self._message_line_regex, line
                ).groups()
                current_content = []
            else:
                current_content.append(line.strip())

        if current_sender and current_content:
            results = self._append_message_to_results(
                results, current_sender, current_timestamp, current_content
            )

        yield chat_loaders.ChatSession(messages=results)

加载消息

loader = WeChatChatLoader(path="./wechat_chats.txt")
raw_messages = loader.lazy_load()

我们可以使用这些消息进行模型微调或其他任务。

代码示例

from langchain_community.chat_loaders.utils import map_ai_messages, merge_chat_runs

# 假设格式正确,转换聊天记录为LangChain消息
merged_messages = merge_chat_runs(raw_messages)
messages = list(map_ai_messages(merged_messages, sender="男朋友"))

# 使用OpenAI的Chat API进行预测
from langchain_openai import ChatOpenAI

llm = ChatOpenAI()  # 使用API代理服务提高访问稳定性

for chunk in llm.stream(messages[0]["messages"]):
    print(chunk.content, end="", flush=True)

常见问题和解决方案

  1. 如何处理非文本消息?

    代码中使用正则表达式跳过非文本消息(如表情、图片等)。确保正则表达式匹配所有非文本格式。

  2. 如何应对网络限制?

    由于某些地区的网络限制,建议使用API代理服务以提高访问稳定性。

总结和进一步学习资源

本篇文章教你如何利用LangChain将微信聊天记录转化为数据格式,方便进行进一步的自然语言处理任务。建议读者了解更多关于LangChain的文档和API使用方式。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值